

October 17th–18th, 2022

PSEUDOELASTICITY OF NITI PARTS MANUFACTURED BY LASER POWDER BED FUSION: HOW FAR WE ARE FROM THE CONVENTIONAL MANUFACTURING ROUTE FOR MEDICAL DEVICES?

L. Patriarca

Politecnico di Milano, Dipartimento di Meccanica

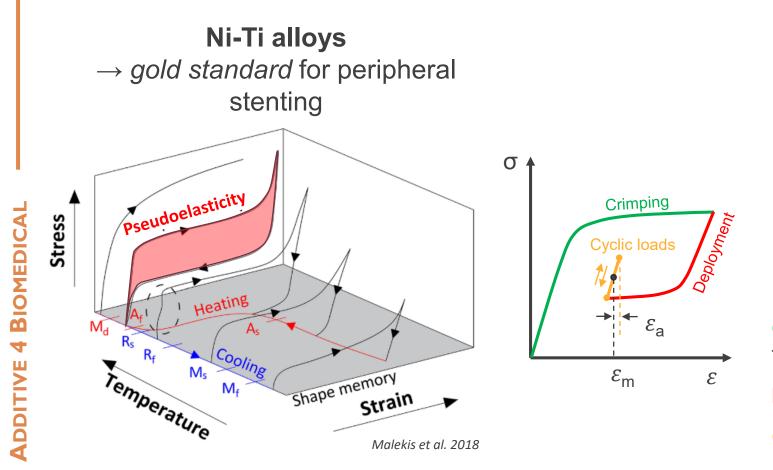
Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

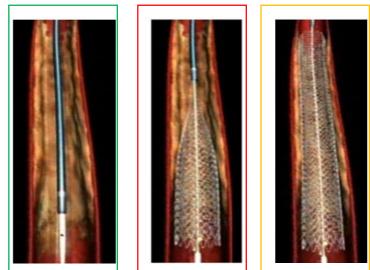
BIOMEDICA

ADDITIVE

Leg Flexion Leg Extension Gold standard Atherosclerotic Normal \rightarrow stenting artery artery Bending xtension/Contraction Torsion Plaque restenosis fracture restenosis fracture 1 million gaits/year stent fatigue failure and severe consequences

Scheninert et al. 2005


1001


Compression

INTRODUCTION

Crimping: diameter reduction to fit on the catheter

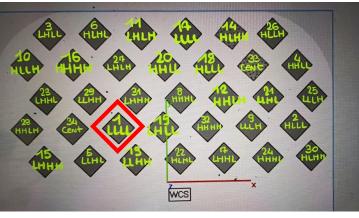
Deployment: self-expansion into the vessel

Cyclic loads: movements due to gait

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

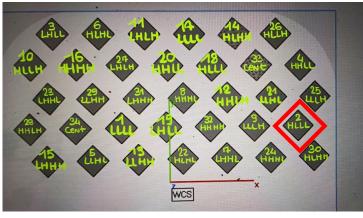
INTRODUCTION

TRADITONAL MANUFACTURING APPROACHES vs AM

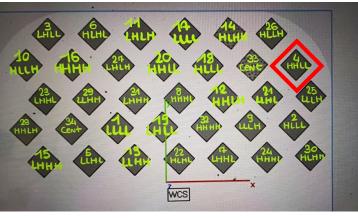

- The traditional manufacturing rout for NiTi stents consists in obtaining a tubular geometry and then laser-cutting to the final shape
- Such manufacturing strategy enables to obtain a texturized material with enhanced mechanical/functional properties
- In principle, Additive Manufacturing (AM) could enable more flexibility in the final geometry
- However, the strict regulations for bio-medical applications prevents the adoption of AM process
- NiTi alloy behavior strongly depends on chemical composition and heat treatment
- AMed NiTi requires further efforts for reaching the best functional performances offered by the traditional manufacturing routes
- In this presentation, we investigate the functional properties of AMed NiTi
- All the specimens were produced by means of a Renishaw AM250 industrial LPBF system

Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 1-13.

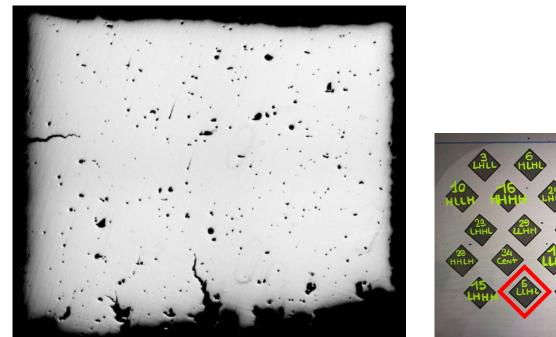
- The first part of the work investigated the effect of the L-PBF process parameters (PPs) on the density and on the Transformation Temperatures that dictate the NiTi functional behavior
- 34 different combinations of PPs were investigated
- The aim was to avoid PPs loading to low donsity and/or cracking

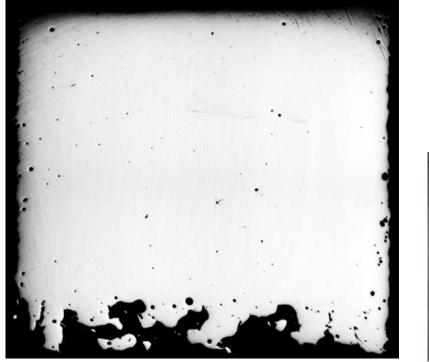


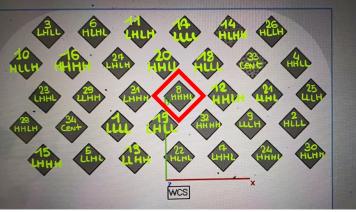
- The first part of the work investigated the effect of the L-PBF process parameters (PPs) on the density and on the Transformation Temperatures that dictate the NiTi functional behavior
- 34 different combinations of PPs were investigated
- The aim was to avoid PPs loading to low density and/or cracking



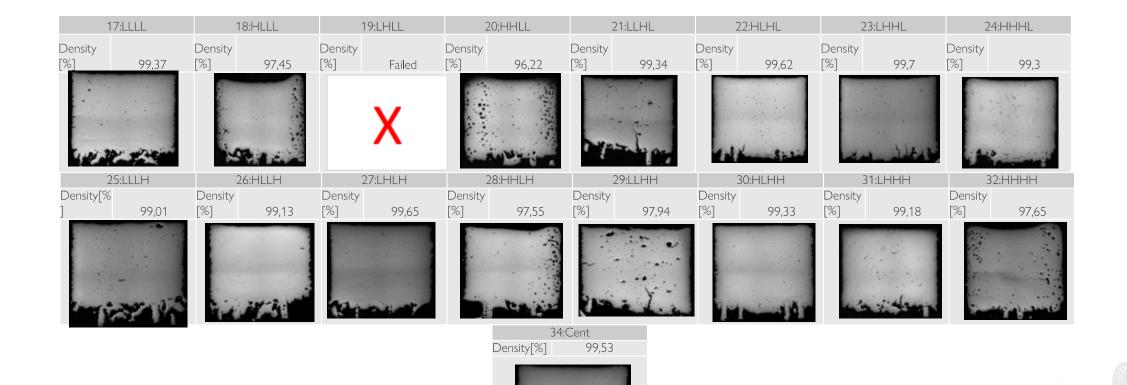
- The first part of the work investigated the effect of the L-PBF process parameters (PPs) on the density and on the Transformation Temperatures that dictate the NiTi functional behavior
- 34 different combinations of PPs were investigated
- The aim was to avoid PPs loading to low density and/or cracking

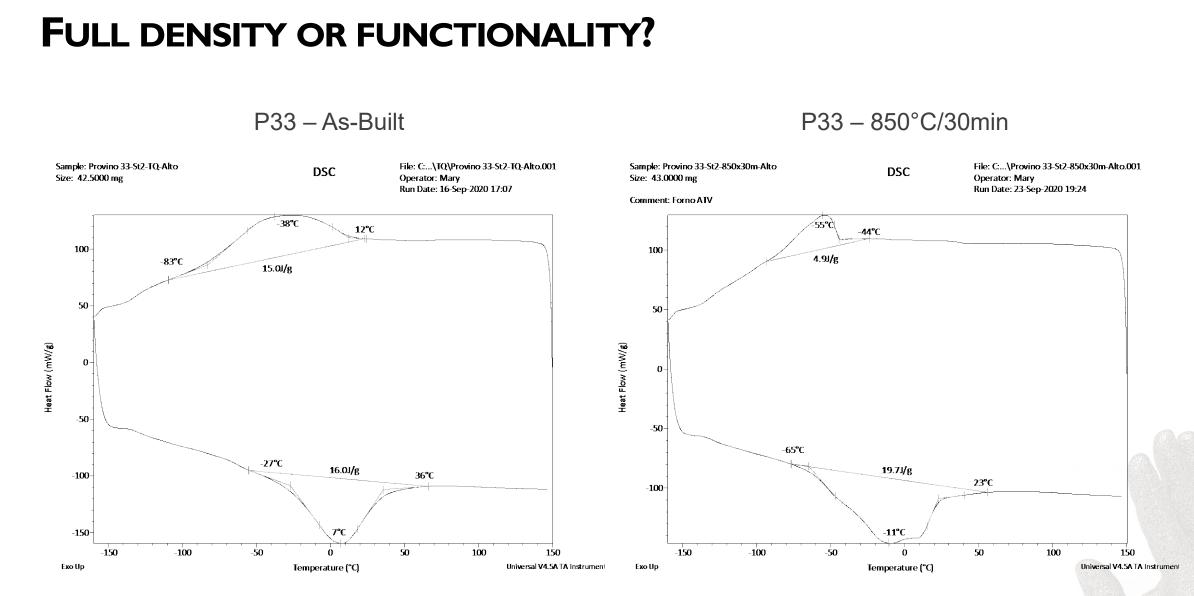



- The first part of the work investigated the effect of the L-PBF process parameters (PPs) on the density and on the Transformation Temperatures that dictate the NiTi functional behavior
- 34 different combinations of PPs were investigated
- The aim was to avoid PPs leading to low density and/or cracking



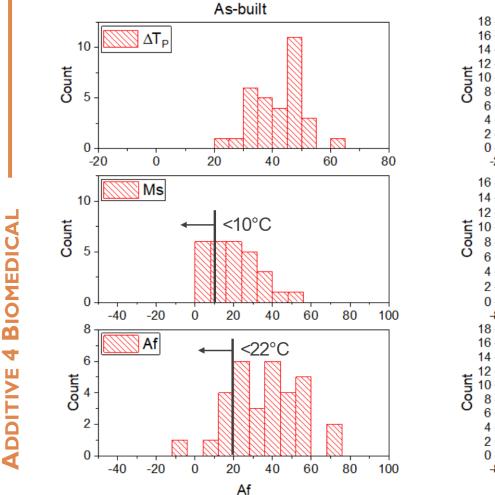
- The first part of the work investigated the effect of the L-PBF process parameters (PPs) on the density and on the Transformation Temperatures that dictate the NiTi functional behavior
- 34 different combinations of PPs were investigated
- The aim was to avoid PPs leading to low density and/or cracking

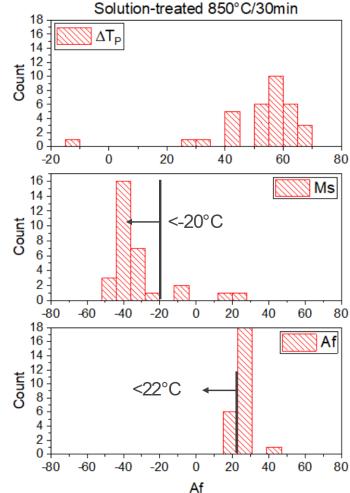

PROCESS PARAMETERS


CoCo AM Manufacture

ADDITIVE 4 BIOMEDICAL

PROCESS PARAMETERS





ADDITIVE

4 BIOMEDICAL

PROCESS PARAMETERS AND TRANSFORMATION TEMPERATURES

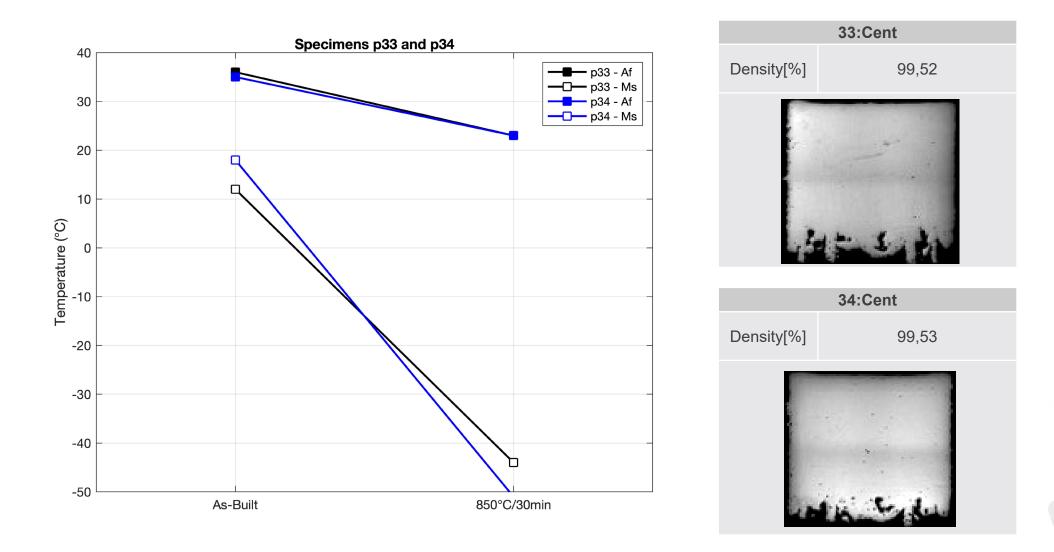
The objective is to obtain superelastic response at Room Temperature

- **Ms**: Martensite Start Temperature
- **As**: Austenite Start Temperature
- **Mf**: Martensite Finish Temperature
- **Af**: Austenite Finish Temperature

PROCESS PARAMETERS AND TRANSFORMATION TEMPERATURES

								4 77	4 4									••	4.00	4 77 4	
Camp.ALTO	AB	As	Ар	Af	Mf	Мр	Ms	ΔΤρ	ΔΗΑ	Νοτε	Camp.ALTO	AB	As	Ар	Af	Mf	Мр	Ms	∆Tp	ΔΗΑ	Νοτε
Provino 1-ST2	\checkmark	-32	18	52	-82	-18	29	36	18,2		Provino 17-ST2	\checkmark	-17	12	53	-51	-18	26	30	16,4	
Provino 2-ST2	\checkmark	-21	6	26	-76	-35	15	41	17,6		Provino 18-ST2	\checkmark	-29	1	29	-86	-38	10	39	15,7	
Provino 3-ST2	√	-72	-39	-10		-61		22	11,3		Provino 19-ST2										
Provino 4-ST2	\checkmark	-2	26	44	-58	-23	24	49	19,9		Provino 20-ST2	√	-19	5	21	-86	-55	5	60	10,9	Double M Peak
Provino 5-ST2	\checkmark	-74	-28	15		-73		45	14,4		Provino 21-ST2	\checkmark	-74	-29	22		-75	3	46	12,3	
Provino 6-ST2	\checkmark	-48	-8	16	-91	-56	5	48	16,8		Provino 22-ST2	\checkmark	-43	-6	24	-94	-55	9	49	15,8	
Provino 7-ST2	\checkmark	-71	-20	19		-65		45	11,9		Provino 23-ST2	\checkmark	-32	1	36	-87	-28	20	29	15,9	
Provino 8-ST2	\checkmark	-40	-3	18	-88	-57	1	54	18,4		Provino 24-ST2	\checkmark	-40	-7	20		-56	3	49	17,5	
Provino 9-ST2	\checkmark	-21	16	56	-86	-14	32	30	21,8		Provino 25-ST2	\checkmark	-32	15	58		-15	32	30	19,1	
Provino 10-ST2	\checkmark	-3	31	55	-45	-2	36	33	18,2	2 M peak	Provino 26-ST2	\checkmark	-51	-6	24	-87	-54	11	48	18,3	
Provino 11-ST2	\checkmark	2	44	69	-39	1	45	43	18,6		Provino 27-ST2	\checkmark	10	49	75	-25	12	52	37	22	
Provino 12-ST2	V	-15	16	42	-68	-21	18	37	19		Provino 28-ST2	V	-78	29	50		-21	29	50	18,6	Elongat ed Peaks
Provino 13-ST2	\checkmark	-80	-37			-	;	#VALUE!	11,8	No M Peak	Provino 29-ST2	\checkmark	-75	-32	7		-74		42	13,6	
Provino 14-ST2	\checkmark	-33	11	32	-92	-34	16	45	20,1		Provino 30-ST2	1	-13	12	38	-72	-31	17	43	12,6	
Provino 15-ST2	\checkmark	-66	-7	37		-39	14	32	18		Provino 31-ST2	1	-45	-2	36	-92	-35	18	33	17,4	
Provino 16-ST2	\checkmark	-7	23	51	-51	-12	26	35	17,3		Provino 32-ST2	1	-73	-6	49		-58	2	52	10,9	
Provino 33-ST2	V	-27	7	36	-83	-38	12	45	16		Provino 34-ST2	1	-19	12	35	-82	-35	18	47	15,2	

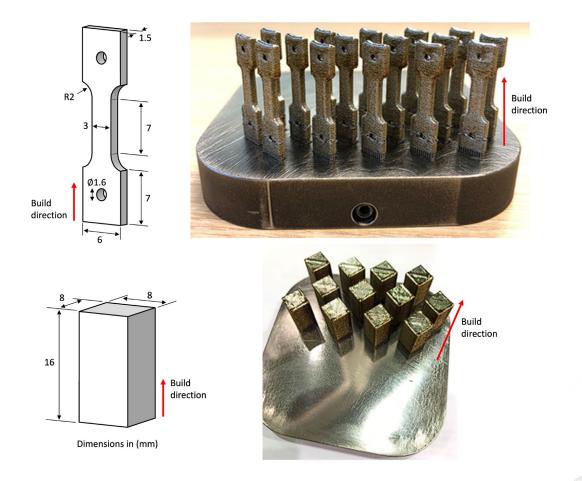
BIOMEDICA


4

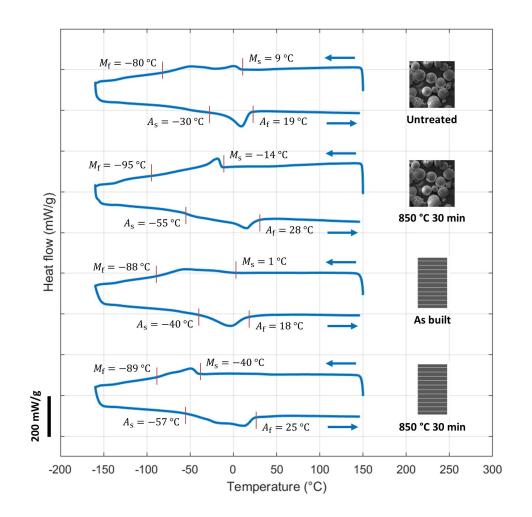
ADDITIVE

PROCESS PARAMETERS AND TRANSFORMATION TEMPERATURES

Camp.ALTO	Sol	As	Ар	Af	Mf	Мр	Ms	∆Tp	∆HA	Νοτε	Camp.ALTO	Sol	As	Ар	Af	Mf	Мр	Ms	∆Tp	∆HA	Νοτε
Provino 1-ST2	\checkmark	-33	9	28	-87	-56	-7	65	19,6	Irregular M Peak	Provino 17-ST2	\checkmark	-45	0	23	-93	-55	-39	55	19,7	
Provino 2-ST2	\checkmark	-40	-7	25	-94	-60	-42	53	19,7		Provino 18-ST2	\checkmark	-61	9	23	-89	-51	-42	60	21	Irregular Peaks
Provino 3-ST2	\checkmark	-75	5	27	-81	-60	-31	65	15,8	Low dH M Peak	Provino 19-ST2										
Provino 4-ST2	\checkmark	-53	-18	25	-114	-76	-43	58	17,7	Small double peaks	Provino 20-ST2	1	-64	7	29	-67	-49	-37	56	14,5	Low dH M Peak
Provino 5-ST2	V	-72	8	26	-94	-58	-37	66	18,5		Provino 21-ST2	1		7	22	-74	-49	-33	56	17,9	Irregular A Peak
Provino 6-ST2	\checkmark	-48	-14	23	-95	-66	-44	52	20,6		Provino 22-ST2	\checkmark	-54	2	21	-90	-52	-39	54	19,5	
Provino 7-ST2	\checkmark	-58	10	27	-81	-53	-38	63	18,3	Irregular A peak	Provino 23-ST2	\checkmark	-37	-6	22	-89	-60	-42	54	18,6	
Provino 8-ST2	\checkmark	-57	11	25	-89	-51	-40	62	21	Small double peaks	Provino 24-ST2	1	-68	-23	24	-64	-51	-43	28	14,9	Low dH M Peak
Provino 9-ST2	\checkmark	-34	8	27	-83	-52	-33	60	22,4	Irregular M Peak	Provino 25-ST2	\checkmark	-37	3	25	-86	-53	-34	56	19	
Provino 10-ST2	\checkmark	-19	11	24	-66	-45	14	56	19,9	Irregular M Peak	Provino 26-ST2	1	-71	9	26	-79	-53	-42	62	17,5	Low dH M Peak
Provino 11-ST2	\checkmark	-36	-7	26	-97	-62	-45	55	18,4		Provino 27-ST2	\checkmark	-3	26	43	-52	-16	23	42	21,8	
Provino 12-ST2	\checkmark	-43	-6	19	-80	-50	-40	44	20,5	Irregular M Peak	Provino 28-ST2	\checkmark	-65	-20	27		-52		32	15	Irregular Peaks
Provino 13-ST2	\checkmark	-10	15	26	-64	-44	-32	59	20,2		Provino 29-ST2	\checkmark		8	26	-79	-54	-33	62	18,9	
Provino 14-ST2	\checkmark	-35	-2	23	-79	-57	-6	55	19,2	Irregular M Peak	Provino 30-ST2	V	-25	4	23	-74	-54	-47	58	15,6	Irregular M Peak
Provino 15-ST2	\checkmark	-53	-11	21		-53	-34	42	18,9		Provino 31-ST2	\checkmark	-40	-8	22	-86	-52	-40	44	19,8	
Provino 16-ST2	\checkmark	-21	6	24	-72	-48	-23	54	19,8	Irregular M Peak	Provino 32-ST2	\checkmark	-70	-13	27				-13	13,7	No M Peak
Provino 33-ST2	\checkmark	-65	-11	23		-55	-44	44	19,7	Low dH M Peak	Provino 34-ST2	\checkmark	-31	0	23	-78	-54	-51	54	19,4	

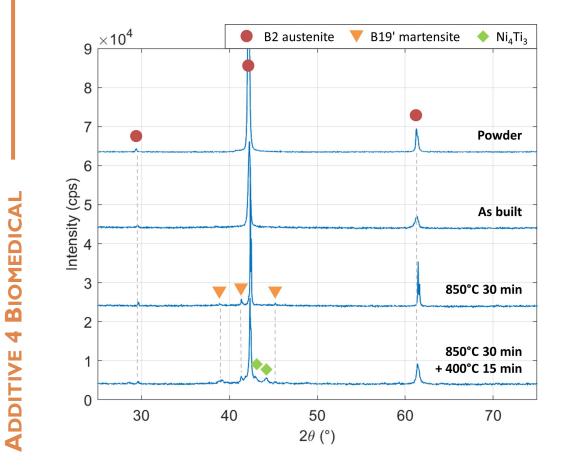


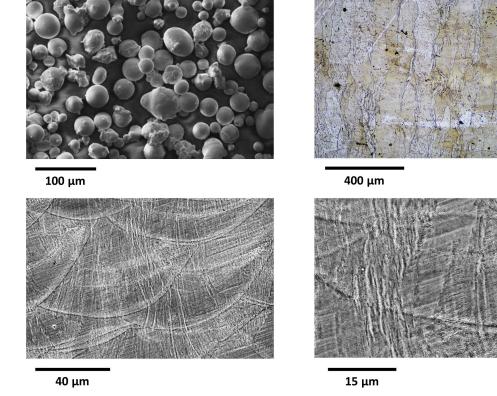
EXPERIMENTAL SET-UP


- Tensile dog-bone micro specimens were manufactured in two different orientations:
 - Vertical
 - Horizontal
- Solid compressive specimens were also manufactured

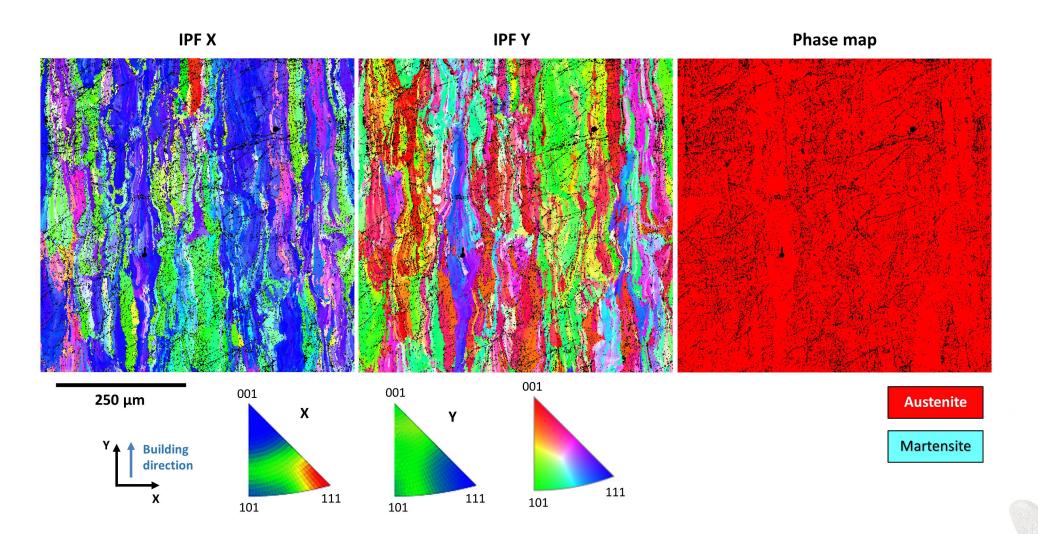
Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13.

TRANSFORMATION TEMPERATURES

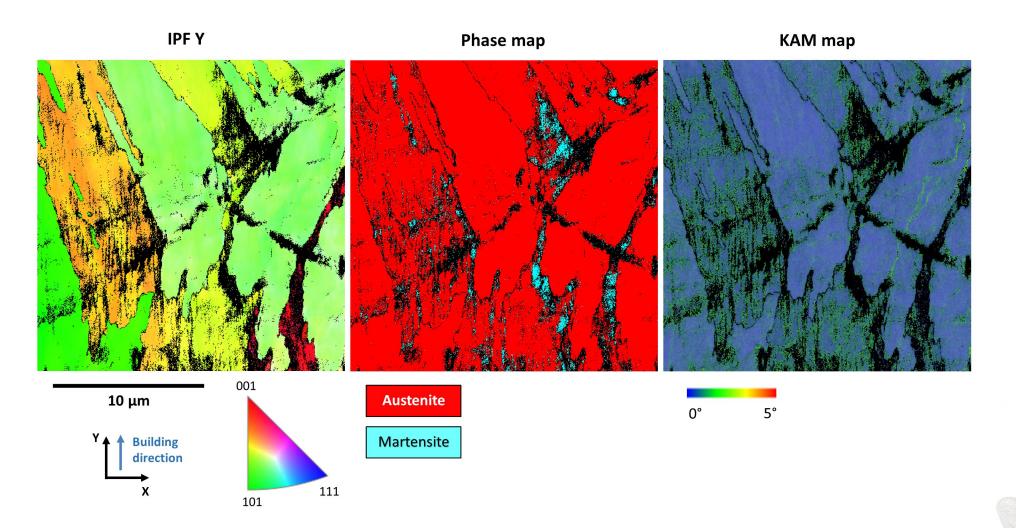



- DSC analyses were performed on gas-atomized powder and solution treated (850°C/1h) powder
- Additional DSC analyses were performed also on two compressive specimens to verify the Transformation Temperatures

Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13.

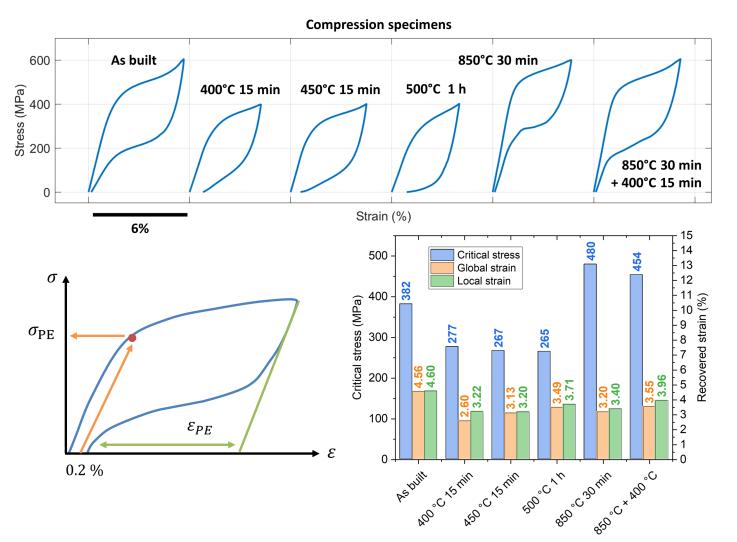

MICROSTRUCTURAL ANALYSIS

CoCo AM Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13.


EBSD – LOW RESOLUTION

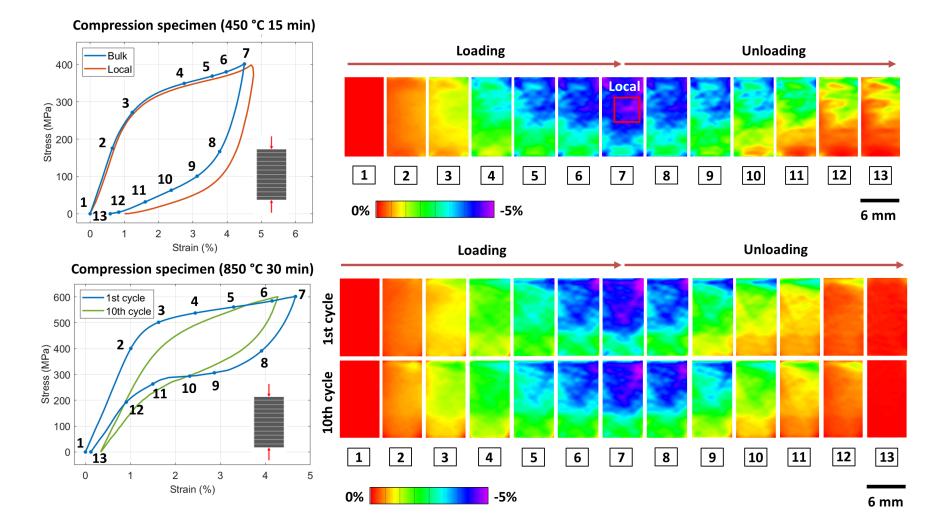
Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13.

EBSD – HIGH RESOLUTION



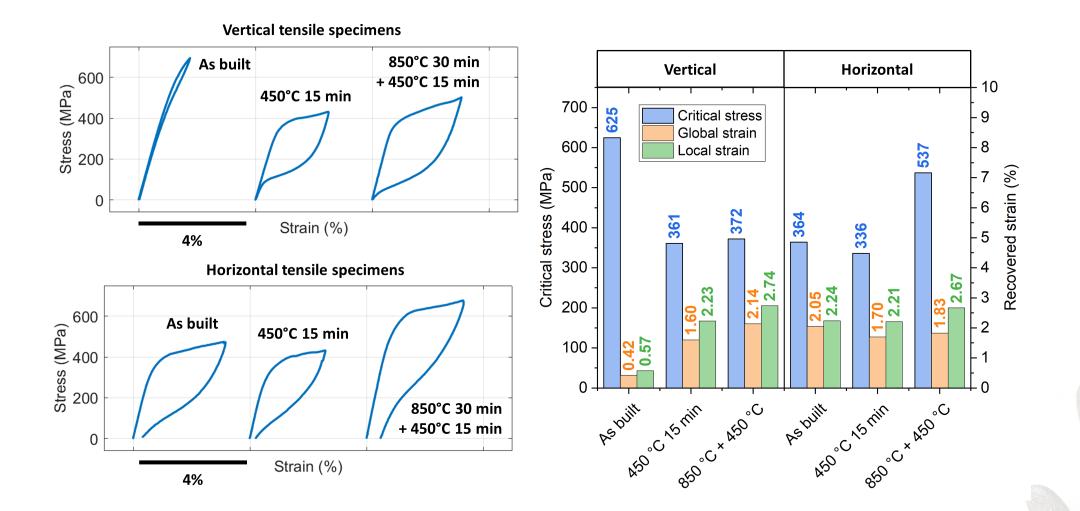
ADDITIVE 4 BIOMEDICA

Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13.


SUPERELASTICITY IN COMPRESSION

Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13. October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

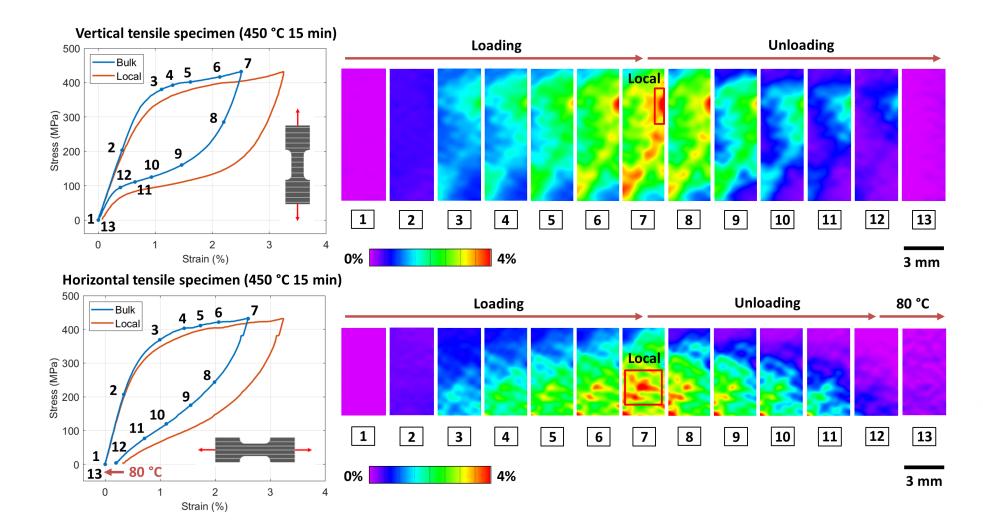
SUPERELASTICITY IN COMPRESSION



ADDITIVE 4 BIOMEDICA

Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13.

TENSILE BEHAVIOR: VERTICAL VS HORIZONTAL

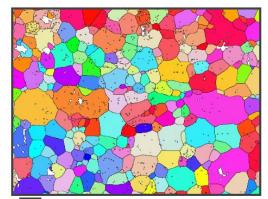

CoCo AM

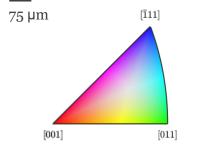
BIOMEDICAL

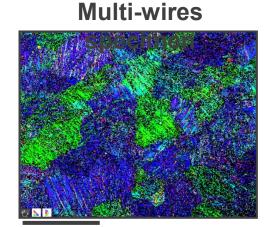
ADDITIVE 4

Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022) 13. October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

TENSILE BEHAVIOR: VERTICAL VS HORIZONTAL

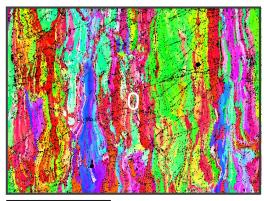



Carlucci, G., et al. "Building Orientation and Heat Treatments Effect on the Pseudoelastic Properties of NiTi Produced by LPBF." Shape Memory and Superelasticity (2022): 13.



COMPARISON BETWEEN THE MICROSTRUCTURES

As cast



25 µm

L-PBF

250 μm

CONCLUSIONS

- NiTi superelastic behavior of AMed NiTi can be esily tailored to precise target operational temperatures
- A density of 99.5% was obtained according to the PPs study
- A maximum tensile transformation strain of 2.74% was obtained for the vertical specimens, while 2.64% for the horizontal ones
- Higher transformation strain (4.60%) was obtained in compression
- To compete with state-of-art stent manufacturing techniques:
 - Density has to be further required
 - Superelastic behavior of current NiTi stents can not be reached as the AMed NiTi is not texturized (texture favors higher transformation strains)
 - Surface roughness is still a problem, a surface treatment is required to remove asperities that are detrimental for fatigue performances

