

October 17th–18th, 2022

LASER POWDER BED FUSION TO PRODUCE ADDITIVE MANUFACTURED TANTALUM COMPONENTS: FROM BIOMEDICAL TO NUCLEAR PHYSICS APPLICATIONS

Alberto Girotto

Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

OUTLOOK

- Tantalum as a biomaterial
- Laser Powder Bed Fusion (LPBF) to produce tantalum components
- Case study: LPBF to optimize tantalum structural components at LNL SPES ISOL facility
 - Design optimization and FEM analysis
 - LPBF process feasibility
 - LPBF production and post-processing
 - CMM verification
 - Preliminary High Temperature (HT) test

Conclusion and perspectives

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

2

TANTALUM AS A BIOMATERIAL

Tantalum characteristics as a biomaterial:

- exceptional biocompatibility;
- excellent corrosion resistance;
- favorable mechanical ductility;
- osteoconductivity, osteoinductivity, and angioinductivity;
- · easily forms a self-passivating surface oxide

October 17th-18th, 2022 Plesso Didate Morgage Agale that agha cilitates 34 thenz formation of

bone-like anatite coatings

CoCc

3

TANTALUM BIOMEDICAL APPLICATIONS AND TRACEBECULAR STRUCTURES

The interconnected porosity of trabecular metal structures allows to:

- promote **cell adhesion** and **migration**;
- enhance vascularization;
- facilitate diffusion of vital cell nutrients and secreted products;
- support mechanical and biological functions.

Trabecular

structured

a)

Tantalum medical devices:

a) Porous tantalum devices for use in cervical and lumbar fusion and vertebral boreplacement

b) Porous tantalum shell with a cementable polyethylene liner for use in revision

acetabular surgery

Source: courtesy of Zimmer Biomet. 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

WHY LASER POWDER BED FUSION?

Tantalum structures are complicated to process via conventional methods because of

- Tantalum very **high melting temperature** (~3000 °C);
- Tantalum extreme **affinity** towards **oxygen**. •

The Laser Powder Bed Fusion (LPBF) is an AM technology suitable to fabricate porous tantalum components with well designed and highly

controlled architectures.

ess

opment & Innovation

eøs

2/IIA 3/IIIB 4/IVB 5/VB 6/VIB 7/VIIB 8/VIIIa 9/VIIIb 10/VIIIc 11/IB 12/IIB 13/IIIA 14/IVA 15/VA 16/VIA 17/VIIA18/VIIIA Al Si S CI

Melting points $T_{\rm m}$ (°C) of chemical elements in the periodic table

CASE STUDY: TANTALUM AND LPBF IN NUCLEAR PHYSICS

Tantalum is a refractory metal, therefore it is suitable for high temperature applications.

ADDITIVE 4 BIOMEDICAL

SPES FACILITY AT **INFN - LNL**

INFN national laboratories

ISOTOPE SEPARATION ON-LINE FOR NUCLEAR MEDICINE

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

ADDITIVE 4 BIOMEDICAL

CoCo

HISOL RESEARCH CONTEXT

HISOL → High performance ISOL systems for the production of radioactive ion beams

DESIGN OPTIMIZATION AND FEM ANALYSIS

/ 0.1 A

The traditional process route foresees the joining of three different components through a TIG welding causing:

- **Distorsions**;
- Lack dimensional / geometrical precision

15 ±0.05

The Additive Manufacturing allows to overcome the intrinsic limits of the current design making more repitible and reliable the FEBIAD ion October 17th–18th, 2022 Plesso Didattico Morgagni, Viae Morgagni, 44-46, 56-34 Firenze

BIOMEDICAL

ADDITIVE 4

LPBF PROCESS FEASIBILITY

The aim was to set the **process parameters** in order to:

- Reduce the surface roughness;
- Obtain the dimensions as close as possible to the nominal ones;
- Enstablish the maximum overhang angle.

Three concentric cylinders were fabricatedInclined walls were producedwith different process parameterswith different angles

LPBF PRODUCTION AND POST-PROCESSING

The **excess Ta powder** was removed, sieved and finally **recycled**

Post-processing:

a) the samples were removed from the copper platform by EDMb) the HT surfaces of the cathode were machined by a lathe

ADDITIVE 4 BIOMEDICAL

CMM DIMENSIONAL/GEOMETRICAL VERIFICATION

The **geometrical/dimensional features** of the AM cathodes are **comparable** with respect to traditional ones, except for the **perpendicularity of the front surface with respect to the cathode axis**: this feature presents **lower values** for the AM cathodes.

	External diameter	Cone angle	Front surface flatness	Flange flatness	External surface cylindicity	Perpendicular ity ext surf - cyl axis	
Nominal	12,000	80	-	-	-		
LPBF technolo gy	12,018	79,549	0,003	0,035	0,04	0,021	
Tradition al technolo qv	12,023	-	0,0759	0,0432	0,0363	0.145	

BIOMEDICAL

4

ADDITIVE

PRELIMINARY HIGH TEMPERATURE TEST

The experimental setup at LNL allows to replicate the real working condition of the component. (T > 2000°C and under high vacuum)

- FEM model verification;
- HT endurance test.

ADDITIVE 4 BIOMEDICAL

CONCLUSION AND PERSPECTIVES

Tantalum components were sucessfully produced by LPBF and tested:

- The cathode was designed for the LPBF process
- The LPBF process feasibility allowed to choose the best process parameters;
- CMM verification allowed to measure the dimensional/geometrical features;
- HT measurements were performed;
- The endurance HT test was successfully

Future perspectives:

- Design development;
- Accurate assembly verifications;
- Off-line and On-line ionization tests.

BIOMEDICA

4

ADDITIVE

BIBLIOGRAPHY

BIOMEDIC

ADDITIVE

Thank you for your kind attention!

- a) Backscattered scanning electron photomicrograph of a coronal histologic section of the monoblock tantalum cup taken through the region indicated by the parallel red line. There is a uniform, although mostly shallow, bone ingrowth along the porous tantalum interface and an absence of calcified tissue in the dome region.
- b) Backscattered scanning electron photomicrograph of a region from a different histologic section, illustrating extensive new-bone formation within the tantalum pores.

DOI: <u>10.2106/00004623-200412002-00017</u>

CoCo AM Manufacture

ADDITIVE 4 BIOMEDICAL

Cathode	Diameter ext cylinder (Ø12 nominal)	Cilindricity ext cylinder	Flange flatness	Top flatness	Perpendicularity Top surf-cyl axis
Std 1	12,0160	0,0395	0,154	0,0208	0,2103
Std 2	12,0358	0,0303	0,0305	0,0339	0,1684
Std 3	12,0158	0,0391	0,0432	0,0177	0,0573
AM 1	12,021	0,0290	0,0340	0,004	0,0360
AM 2	12,014	0,0200	0,0350	0,002	0,005

ENDURANCE TEST

Scanning strategies

