

October 17th–18th, 2022

AM FOR CUSTOM MADE SURGERY TEMPLATES

A.NADDEO - N.CAPPETTI - F.NADDEO - E.CATALDO

 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

ADDITIVE 4 BIOMEDICAL

SPINE JIG FOR PEDICLE ARTHRODESIS

SEGMENTATION FROM CT SCAN

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

VERTEBRA & TEMPLATE

IN VIVO APPLICATION

SPINE JIG FOR PEDICLE ARTHRODESIS

BILATERA SAGITTAL SPLIT OSTEOTOMY – A CUSTOM MADE POSITIONING TEMPLATE

- SEGMENTATION OF BONES STRUCTURE
- IDENTIFICATION OF ANATOMICAL SYMMETRY PLA
- IDENTIFICATION OF ANATOMICAL LOCATION POINTS

BILATERA SAGITTAL SPLIT OSTEOTOMY – A CUSTOM MADE POSITIONING TEMPLATE

CUT SIMULATION

It was possible positioning the mandibular Braches as from CAD project, with the application of a template obtainedf from «virtual cast» of the mandibular structure

ADDITIVE 4 BIOMEDICA

DIMA must be designed on «correct» configuration of mandibular segment

MIRRORED CUSTOM MADE CRANIOPLASTY PLATE

Segmentation

Mirroring of cranial gap

Plate Design

ADDITIVE 4 BIOMEDICA

CUSTOM MADE SUPPORT FOR UMBILICAL OSTOMY

The singular position of the stoma did not allow to Apply the classic «bag» without avoiding the Leakage of intestinal fluids

With a reverse engineering process, the affected Area was scanned and a support designed. Remodeling the typical concavities and convexities of the umbelical area, the support allow the application of the classical medical aids for Ostomy

ADDITIVE 4 BIOMEDICAL

AM SOLUTIONS CREALITY ENDER 5 PRO PLUS

- Building Area 350*350*400 (mm)
- Max resolution 0,05 mm
- FDM (1,75mm)
- Materials: PLA, PETG, HIPS, TPU

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

8

AM SOLUTIONS ZORTRAX M200 PLUS

- Building Area 200*200*180 (mm)
- Max resolution 0,03 mm
- LPD (1,75mm)
- Materials: PLA, PETG, HIPS, TPU, ABS, ASA, PCABS, NYLON, ASAX

ADDITIVE

BIOMEDICAL

AM SOLUTIONS

Elegoo Mars pro 2

- Building Area 129*80*160 (mm)
- Max resolution 0,03 mm
- LCD MSLA
- Materials: all 405nm resin

ADDITIVE

BIOMEDICAL

AM SOLUTIONS ELEGOO SATURN

- Building Area 192*120*200 (mm)
- Max resolution 0,03 mm
- LCD MSLA
- Materials: all 405nm resin

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

11

AM SOLUTIONS FLSUN QQ-S PRO

- Building Area 255*255*360 (mm)
- Max resolution 0,05 mm
- FDM (1,75mm)
- Materials: PLA, PETG, HIPS, TPU

BIOMEDICAL

4

ADDITIVE

AM SOLUTIONS DWS 3500 SD

- Building Area 140*140*180 (mm)
- Max resolution 0,01 mm
- Blue Laser SLS
- Materials: DWS resins (also biocompatible and flexible)

BIOMEDICAL

ADDITIVE 4

AM SOLUTIONS TECHNODESIGN P.R.O.S.H.A.

- Building Area [∞]* [∞] *750 (mm)
- Max Resolution 2.5 mm (Large scale printer)
- High Flow system
- Materials: PLA, PETG, HIPS, TPU, PEEK

BIOMEDICAL

4

ADDITIVE

TISSUE ENGINEERING

Novel "load adaptive algorithm based" procedure for 3D printing of micro space-frame based components showing parametric curved fibers

Effect of the algorithm elaboration on the cubic RVE: a) isotropic cubic lattice structure showing the direction of the imposed displacements (X axis); b) cubic lattice structure showing resized beams oriented along the X axis; c) cubic lattice structure showing curved beams; d) 3D printed polymeric specimen.

ADDITIVE 4 BIOMEDICAL

COMPUTER-AIDED TISSUE ENGINEERING

Optimization of an ad hoc Realized Space Frame Structured RVE for FEM Modeling of Nanoporous Biopolymeric Scaffolds Obtained by Supercritical Fluids Assisted Process

