

October 17th–18th, 2022

OPTIMIZATION AND MATERIAL CHARACTERIZATION OF A 3D PRINTED COMPOSITE PROSTHETIC FOOT

Abdel Rahman Al Thahabi, Andrea Canegrati

Luca M. Martulli, Andrea Sorrentino, Marino Lavorgna, Emanuele Gruppioni, Andrea Bernasconi

Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

ADDITIVE 4 BIOMEDICAL

MOTIVATIONS

Benchmark: Laminated composite foot prosthesis

ADDITIVE 4 BIOMEDICA

2

- 🔁 Lightweigh
- Excellent mechanical
- properties Expensi
- Yew

MOTIVATIONS

Benchmark: Laminated composite foot prosthesis

- Lightweigh
- Excellent mechanical
- properties Expensi
- Ve Low

customization

3D printed: Sandwich like structure

- Continuos fibre skins
- Short fibre core

Lightweigh
 Cood mechanical
 Good mechanical
 High
 Properties
 Printing parameters performance
 dependent
 Safe and optimum design based on material characterization

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

CoC

3

4

What affects characterization?

4

4

ADDITIVE

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

7

BIOMEDICAL

4

ADDITIVE

- Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)
- **Specimen:** 0-90° layers stacking sequence

11

- Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)
- Specimen: 0-90° layers stacking sequence

Meso-structure morphology of specimen's cross-section

ADDITIVE 4 BIOMEDIC

- Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)
- Specimen: 0-90° layers stacking sequence

Meso-structure morphology of specimen's cross-section

ADDITIVE 4 BIOMEDICA

- Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)
- Specimen: 0-90° layers stacking sequence

Imm Mag = 45 X

Meso-structure morphology of specimen's cross-section

BIOMEDICA

4

ADDITIVE

- Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)
- Specimen: 0-90° layers stacking sequence

Failure surface perpendicular to the 0°

BIOMEDICA

4

ADDITIVE

- Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)
- Specimen: small specimens for Longitudinal and Transverse properties evaluation
- Design: avoid buckling and limit barreling

UD specimens made up of concentric contour beads only

- Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)
- Specimen: small specimens for Longitudinal and Transverse properties evaluation

Design: av 100 -3.0 • 100 -2.5 80 -80 Stress [MPa] 2.0 UCS [MPa] 60 -[е - 2.1 Ш 60 40 -40 1.0 20 -20 0.5 -RP dry **RP** cond 0.0 0 Cond Dry Cond Dry 10 15 20 0 5 Strain [%]

 Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)

Specimen: small specimens for Longitudinal and Transverse properties evaluation

- Ucs lower bound
- 20% reduction E, UCS due to water

18

 Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)

 E_L evaluated

Ucs lower bound

20% reduction E,

UCS due to water

Specimen: small specimens for Longitudinal and Transverse properties evaluation

Material: Micro-carbon fibre reinfroced PA6, supplied by Markforged (Onyx TM)

UD specimens

made up of

beads only

Specimen: small specimens for Longitudinal and Transverse properties evaluation

3D printed composite foot prosthesis

Lightweight

Good mechanical properties

G Reduced cost Increased customisation G

Geometry versatility Too many parameters

DDITIVE 4 BIOMEDICA

MOTIVATIONS

Development of a 2D design and optimisation tool

Lightweight

Good mechanical properties

Reduced cost Increased customisation

Geometry versatility Too many parameters

ADDITIVE 4 BIOMEDICAL

VALIDATION OF THE 2D OPTIMISATION TOOL

VALIDATION OF THE 2D OPTIMISATION TOOL

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

ADDITIVE 4 BIOMEDICA

CoCo

VALIDATION OF THE 2D OPTIMISATION TOOL

4 BIOMEDICAL

ADDITIVE

CoCo

APPLICATION TO 3D PRINTED PROSTHESIS

Improvement by AM:

- Integrated structure
- Sandwich-like cross-sections

BIOMEDICA

ADDITIVE 4

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

ADDITIVE 4 BIOMEDICA

CoCo

APPLICATION TO 3D PRINTED PROSTHESIS

Design variables: c, t and config. #

Design constraint: same stiffness of the reference prosthesis

DESIGN CASES

BIOMEDICAL

4

ADDITIVE

REFINED OPTIMISATIONS

BIOMEDICA

4

ADDITIVE

3D STRESS ANALYSIS

3D STRESS ANALYSIS

CONCLUSIONS

Development of a numerical optimisation tool Development of a versatile Prosthetic Feet

Development of a versatile Prosthetic Fee optimization tool.

□ The tool enables designing the material structure and geometry of the prosthesis.

Material characterization

Greater insight into the behavior of advanced materials.

3D printed composite foot prostheses seems

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

possible

ACKNOWLEDGEMENTS

 The activities reported are conducted in the framework of the Profil project, funded by INAIL and coordinated by CNR – IPCB

- The activities reported herein
- We acknowledge contributions from all the other partners

CONGREGAZIONE DEL

INFERMIERE DELL'ADDO

