

October 17th–18th, 2022

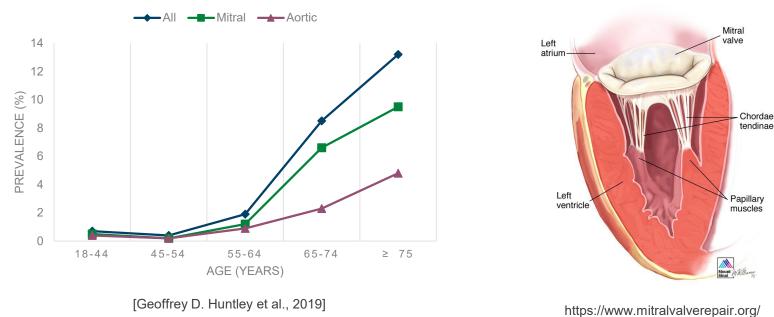
DEMONSTRATION OF USE OF A NOVEL 3D PRINTED SIMULATOR FOR MITRAL VALVE TRANSCATHETER EDGE-TO-EDGE REPAIR

Michele Bertolini, Politecnico di Milano

Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

BIOMEDICA

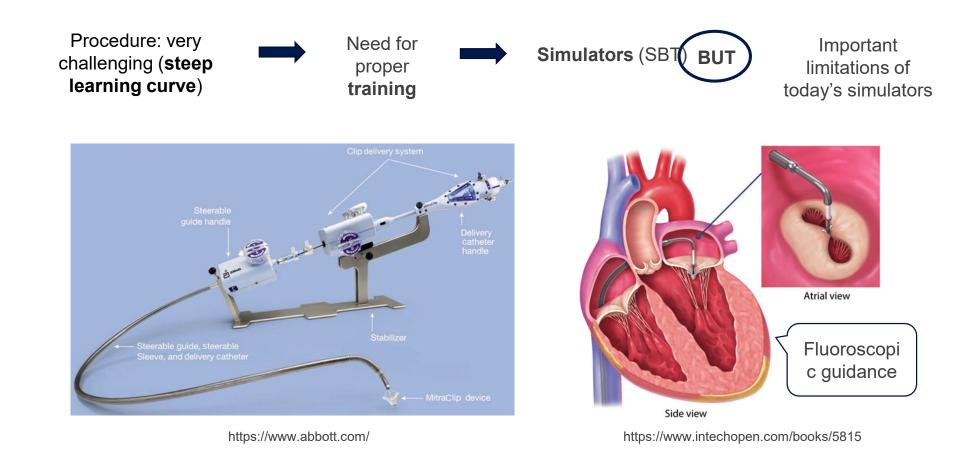
ADDITIVE



INTRODUCTION

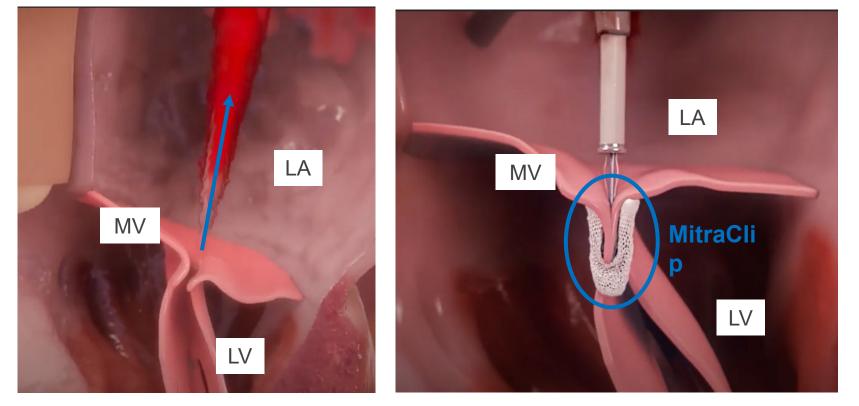
Background:

- 2.5% of people in developed countries have at least moderate valve disease
- Mitral Valve (MV) disorders are the most widespread (mitral valve regurgitation)
- Instead of open surgery, minimally invasive approaches are gradually taking place
- **MitraClip**[™] (Abbott Laboratories) has become the most widely adopted Transcatheter Edge-to-Edge Repair (TEER) approach, with >100,000 procedures (2021)



October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

2


INTRODUCTION

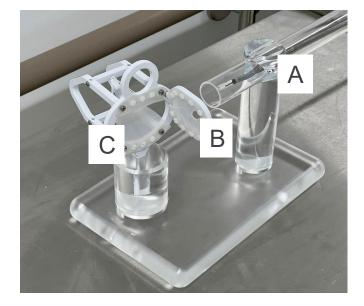
The **MitraClip** is a cobalt-chromium catheter delivered device, which utilises two grippers to grasp and **coapt** the MV leaflets

INTRODUCTION

Before (regurgitant valve)

After MitraClip implantation

https://www.abbott.com/



October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

4

STATE-OF-THE-ART

The state-of-the-art training for MitraClip by Abbott is here reported:

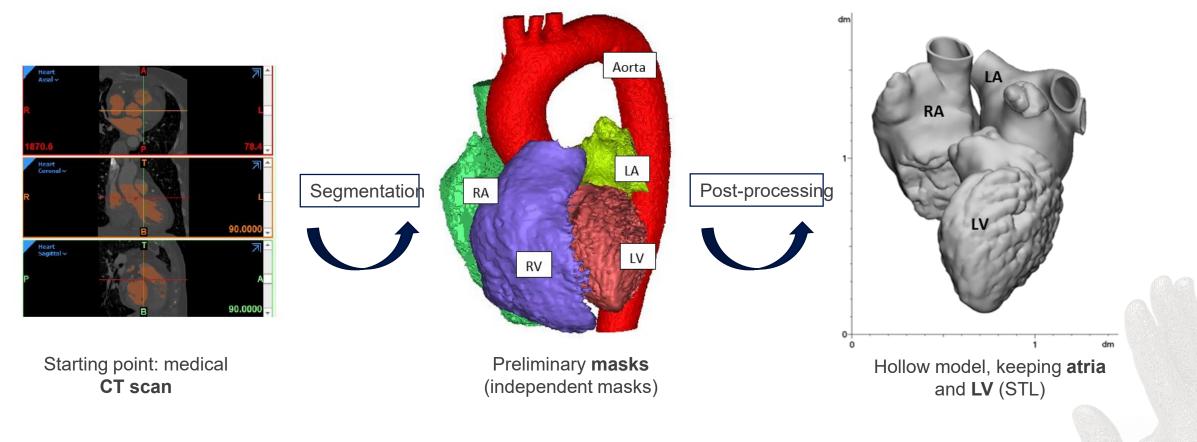
A: Inferior Vena Cava (IVC)B: Transeptal punctureC: Annulus with leaflets

Limitations:

- Lack of physical borders
- Materials do not represent human tissue
- Unrealistic procedural

scenario Objective:

- ✓ Anatomical realism
- Accurate mechanical behaviour
- Include the challenges
 of the procedure

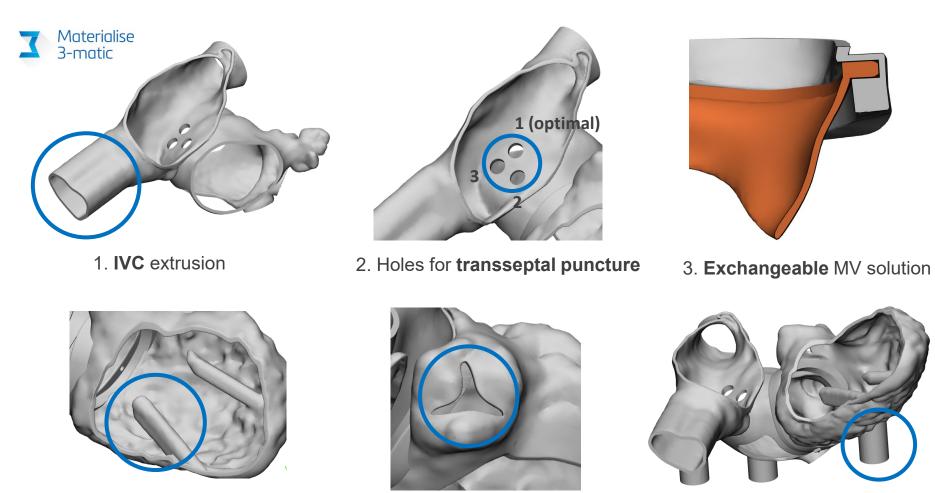

BIOMEDICA

4

ADDITIVE

MATERIALS AND METHODS

I. Anatomy-based design:

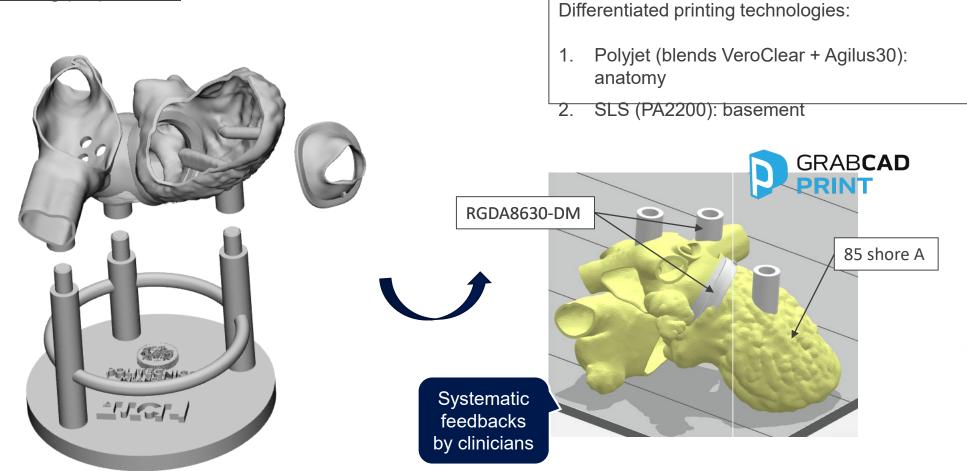


ADDITIVE 4 BIOMEDICAL

MATERIALS AND METHODS

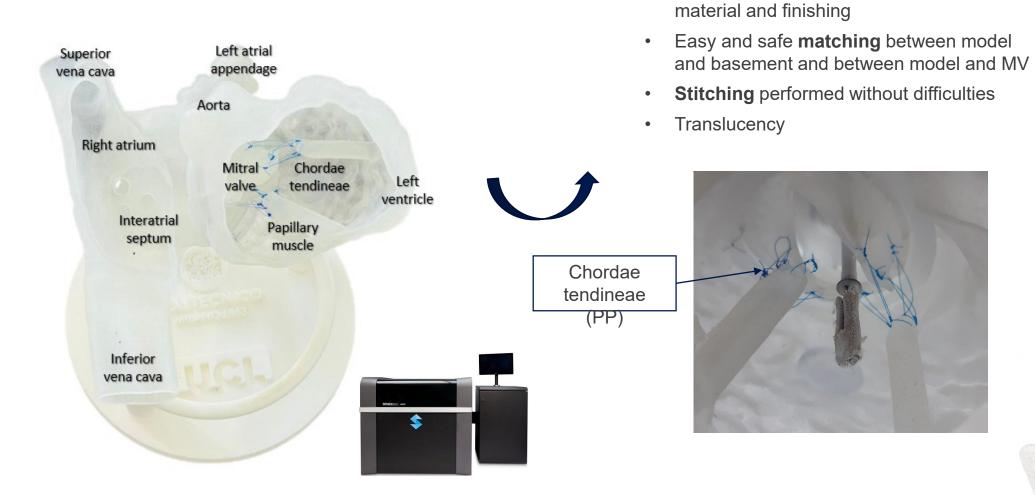
4. Papillary muscles extrusion

5. Aortic valve commissures



October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

7


II. 3D printing preparation:

RESULTS

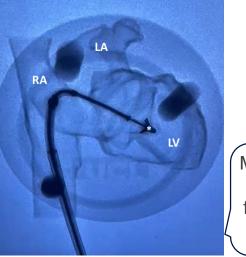
III. Printing

Satisfactory haptic sensation for the

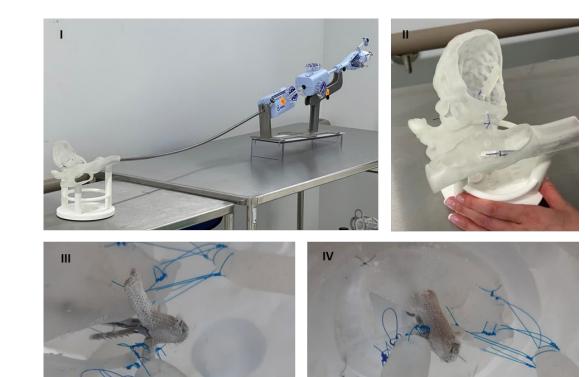
٠

ADDITIVE

4 BIOMEDICA


RESULTS

<u>IV.</u>


- Testing: St. Bartholomew's Hospital (London)
- Expert surgeon (> 100 cases in . TEER)

Steps of the procedure:

- Preparation
- Guide insertion Ш.
- Positioning of the 111.

Model visible under fluoroscopic imaging!

ADDITIVE 4 BIOMEDICAL

Results

V. Feedbacks collection:

						Flease circle and rate for h	Flease circle and rate for now connuent you are for the following skins.							
	Not confident				Highly Confident		Not confident				Highly confident			
Before this training, how confident are you with this procedure?	1	2	3	4	5	Transeptal crossing	1	2	3	4	5			
procedurer						Steering clip in LA	1	2	3	4	5			
	Never before	A few times under supervision	Less than 1 year	1-5 years	More than 5 years	Positioning trajectory of clip	1	2	3	4	5			
How long have you been carrying out this procedure for?	1	2	3	4	5	Recognising area of interest on Mitral Valve	1	2	3	4	5			
	Pos	st-Trainin	g			Assessing position of clip above valve					5			
Please circle and rate for how accurate the following are compared to carrying out the procedure on a patient:						Assessing orientation of clip above valve				4	5			
	Not Accurate				Highly Accurate	Grasping leaflets	1	2	3	4	5			
Carrying out the procedure on the model compared to in the catheterisation lab?	1	2	3	4	5	Closing a clip	1	2	3	4	5			
The height and angle of insertion above the mitral valve	1	2	3	4	5	Re-opening clip and repositioning	1	2	3	4	5			
The advancement of the catheter into the RA via the IVC	1	2	3	4	5	Removal of clip delivery system	1	2	3	4	5			

Please circle and rate for how confident you are for the following skills:

Quantitative questionnaires for operator's confidence

RESULTS

Feedbacks collection results:

Post-training rating comparing 3D model to carrying out the procedure in patients

	0	10 16		20	30	40 (cliniciar stud	n, nurse
Carrying out the procedure on the model compared to in the catheterisation lab	-			13	4	Stud	jent)
The height and angle of insertion above the mitral valve	-	14		14	5	 Not Accurate Not Accurate 	
The advancement of the catheter into the RA via IVC	1	13		13	6	 Poorly Accurate Neutral Fairly Accurate 	
This model is effective as a training simulator	11	5	16	;	13	Highly Accurate	
This model should be integrated into training for the procedure	12		17		16		

Participants:

Different levels of expertise
 Different professional qualifications (clinician, nurse, student)

DISCUSSION

- Preliminary users' feedbacks are promising
- Strenghts include anatomical accuracy, modularity of the system, mechanical performance and translucency
- The simulator was evaluated as highly realistic **representation of the procedural circumstances**
- The 3D printed model is an effective training simulator in increasing operator confidence

Developments:

- Feedbacks collection in a more systematic way
- Higher number of feedbacks to get statistical relevance compared with stateof-the-art training
- Assessment of the effect of proposed system on improving clinical outcomes
- Movable leaflets
- Extension to new types of transcatheter intervention (e.g. TTVR)

BIOMEDICAL

4

ADDITIVE

Thanks for the kind attention!

Reference: Bertolini, M.; Mullen, M.; Belitsis, G.; Babu, A.; Colombo, G.; Cook, A.; Mullen, A.; Capelli, C. Demonstration of Use of a Novel 3D Printed Simulator for Mitral Valve Transcatheter Edge-to-Edge Repair (TEER). Materials 2022, 15, 4284. https://doi.org/10.3390/ma15124284

