

October 17th–18th, 2022

CAD AND 3D PRINTING IN PREOPERATIVE SURGICAL PLANNING

<u>Giulia Alessandri,</u>

Gian Maria Santi, Giampiero Donnici, Leonardo Frizziero

Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

ADDITIVE 4 BIOMEDICAL

Complexity of the clinical case

Difficulty in predicting outcomes

- Rare and/or unique malformations
- Growing corrections
- Bone and soft tissue surgery
- Multiplanar corrections
- Customized procedure
- Non-standardizable

Patient-Specific CAD Modelling and 3D Printing for Surgical Planning and Simulation

BIOMEDICA

4

ADDITIVE

METHODS

METHODS

APPLICATIONS

Orthopedic Surgery

Collaboration

Pediatric Orthopedics and Traumatology – Rizzoli Orthopedic Institute

Musculoskeletal Tissue Bank – Rizzoli Orthopedic Institute Industrial Engineering Department – University of Bologna

Complex bone deformities Patient-Specific Instruments

APPLICATIONS

Orthopedic Surgery

Complex bone deformities Patient-Specific Instruments

Collaboration

Pediatric Orthopedics and Traumatology – Rizzoli Orthopedic Institute

Industrial Engineering Department – University of Bologna

ADDITIVE 4 BIOMEDICAL

APPLICATIONS

Cardiac Surgery

Aortic Dissection

Collaboration

Cardiothoracic & Transplant Surgery Unit – Sant'Orsola-Malpighi Polyclinic

Industrial Engineering Department – University of Bologna

MATERIALS

ADDITIVE 4 BIOMEDICAL

10

Expansion of AM into other areas of medicine (e.g., Spinal Surgery)

Research of new materials and infill for a realistic representation with AM (e.g., Variable density, complex infill geometries)

3D models that can performed surgically like the real counterparts

3D implantable objects with attached sensors

3D objects as markers for AR/VR

CoCo AM Manufature

CONCLUSIONS

Personalization of the surgical approach

Accuracy of preoperative planning

Visual and tactile feedback

Flexibility of technology

ADDITIVE 4 BIOMEDICAL

COLLABORATIONS

Industrial Engineering Department – DIN **Università di Bologna**

SERVIZIO SANITARIO REGIONALE EMILIA - ROMAGNA Istituto Ortopedico Rizzoli di Bologna Istituto di Ricovero e Cura a Carattere Scientifico

> Pediatric Orthopedics and Traumatology and Musculoskeletal Tissue Bank **Rizzoli Orthopedic Institute**

POLICLINICO DI SANT'ORSOLA

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologna

Cardiothoracic & Transplant Surgery Unit Sant'Orsola-Malpighi Polyclinic

ADDITIVE

BIOMEDICA