

October 17th–18th, 2022

MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF NITINOL STENTS PRODUCED BY LASER POWDER BED FUSION BEFORE AND AFTER HEAT TREATMENT

<u>Maria Beatrice Abrami</u>

Università degli Studi di Brescia, via Branze 38, Brescia ING-IND/21

Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

NITINOL (NI-TI)

- > Near-equiatomic nichel-titanium alloy, the most common **shape memory metal material**
- > Two different phases depending on T which determine two different behaviors:

LASER POWDER BED FUSION (L-PBF)

> Additive manufacturing tecnique which consists in manufacturing components by adding material layer by layer

➢ In the biomedical field:

✓ Advantages	× Limits
Freedom of design	Process complexity
Possibility to manufacture tailor- made biomedical implants with complex shape	Wide number of parameters difficult to handle
Lower costs	Typical process defects

> For Nitinol:

- Ni evaporation during laser processing
- Formation of secondary phases
- → Temperature transformation control
- ightarrow Obtainment of the superelasticity

AIM OF THE WORK

Investigate the possibility to use additive manufacturing techniques to produce self-expandable stents in Nitinol

Process feasibility Parameters Nichel evaporation

Resulting properties Transformation Temperatures Microstructure Mechanical properties

Overcome the limits of the <u>standardized</u> conventional production

> **Production**

Heat treatments

T1	600 °C	1.5 h
T2	1100 °C	1.5 h

- High vacuumArgon partial pressure 1 mbar
- VACUUM FURNACES

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

Conventional stent

- NiTi, self-expandable
- Superficial Femoral Artery Stent (SFA Stent)
- Medtronic

Characterization: as-built (A, B, C), TI, T2, SFA stent

RESULTS: AS-BUILT SAMPLES

- Melt pools and columnar grains
- Porosities
- Not completely fused particles → poor surface finishing

SFA stent

- Double peaks
 |T_A T_R| < 10 °C

presence of the **R-phase**

Austenite at T_{operation} •

L-PBF samples

- Equal TTs in samples A, B, C •
- No double peaks ullet
- Martensite a T_{operation} ۲
- Curves shift to the right compared to •

powder \rightarrow Ni loss during the process

October 17th–18th, 2022 Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

Temperature (°C)

RESULTS: AS-BUILT SAMPLES

- Almost linear behaviour
- Negligible effect of the process parameters
- Lower compressive strength of L-PBF stents compared to SFA stents

Compression resistance (N)					
Sample A	0.70 ± 0.19				
Sample B	0.51 ± 0.07				
Sample C	0.45 ± 0.07				
SFA stent	0.82 ± 0.03				

ADDITIVE 4 BIOMEDICAL

	Ti	Ni
1	50.99	49.07
		(at%)

	Ti	Ni	
1	49.49	50.51	→ matrix
2	41.86	58.14	→ Ni-rich
3	63.84	36.16	→ Ti-rich
4	48.23	51.77	→ matrix
		(at%)	

- Permanence of the L-PBF structure
- Martensite phase within the melt pools

- Mixed structure: austenite near the edges, martensite at the center
- Ti₂Ni phase formation
- Nichel rich precipitates (≈Ni₃Ti₂) as

result of the matrix chemical variation

11

ТΙ

- Slight shift to the **right** (+20 $^{\circ}$ C)
- More evident peaks ightarrow more homogeneous

structure

• Martensite at $T_{operation}$

T2

- Shift to the left (-60 $^\circ\text{C})$
- More rounded peaks → more heterogeneous structure
- Mixed structure at T_{operation}
- Curves closer to those of SFA stent

• T1 worsens resistance

 T2 improves resistance → similar behaviour to SFA stent

Compression resistance (N)					
L-PBF stent	0. 70 ± 0.19				
T1	0.41 ± 0.01				
T2	0.82 ± 0.03				
SFA stent	0.82 ± 0.03				

ADDITIVE 4 BIOMEDICAL

CONCLUSIONS

As-built

- 1.5% Nichel loss during the process
- L-PBF stents exhibit the same overall behaviour

Heat-treated

- T1 (600 °C, 1.5 h) \rightarrow stress relieving
- T2 (1100 °C, 1.5 h) \rightarrow change in microstructure, which approaches the ideal one for superelasticity

 \rightarrow properties close to those of the conventional stent

Heat treatments can constitute an operative method to shape the alloy to achieve the desired properties, but which in any case cannot disregard from an effective process control

NEXT DEVELOPMENTS

Ni

52.39

Changing the process parameters

Nitinol powder (%at)

Changing the **powder chemical composition**

Ti

47.61

BIOMEDICAL

DDITIVE

Thanks for the attention

m.abrami003@unibs.it

TTs

Material	Temperature (°C)								
i iatei iai	M _f	Mp	M _s	R_f	R _P	R_{s}	A _s	Ap	A_{f}
Powder	31	37	49	-	-	-	58	66	77
Sample A	28	53	68	-	-	-	69	87	93
Sample B	35	57	86	-	-	-	71	88	98
Sample C	28	47	68	-	-	-	65	84	97
SFA stent	<-70	-60	-40	10	18	27	19	23	31

Matorial	Temperature (°C)								
Platerial	M _f	Mp	Ms	R_f	R _p	R _s	A _s	Ap	A _f
As built	28	47	68	-	-	-	65	84	97
T1	58	68	78	-	-	-	86	102	106
T2	-13	-5	3	-	-	-	-17	32	45
SFA stent	<-70	-60	-40	10	18	27	-1	14	31

ADDITIVE 4 BIOMEDICAL

TTs

NEXT DEVELOPMENTS

Nitinol powder (%at)				
Ni	Tì			
52.39	47.61			

Sample	Laser Power	Scan Speed	Hatch Space
S2	150 W	500 mm/s	80 µm
S3	180 W	1000 mm/s	80 µm
S4	180 W	500 mm/s	80 µm
		Layer th Sp	ickness = 60 μm pot size = 60 μm

z, 100X

