Lanzotti Antonio
Professore Ordinario
Università degli Studi di Napoli Federico II
antonio.lanzotti@unina.it
Sito istituzionale
SCOPUS ID: 15063012200
Orcid: 0000-0002-8485-7006
Pubblicazioni scientifiche
Abstract: Additive manufacturing (AM) allows to create complex shapes and to improve the performance of critical components in different fields. The characteristics of the as-built parts can be an obstacle in terms of satisfaction of the parts’ quality requirements. Concerning the manufacturing process, the relationship among the process parameters, microstructure and mechanical properties is crucial in different areas and involves innovative and traditional fabrication techniques. Fused Deposition Modeling (FDM) is widely employed to fabricate devices with tailored and enhanced properties. In this context, the process parameters clearly influence the quality of devices fabricated from different polymer-based materials, according to the specific AM technology. As reported in the literature, many theoretical models for the prediction of the surface quality focus on the concept of roughness. Furthermore, several parameters have also been proposed to assess the surface quality. Benefiting from advances in design strategies and methodologies of analysis, the aim of the current research was to provide further insight into the development of models for surface roughness prediction in FDM. The relationship among the layer height, printing speed, flow rate and extrusion width was considered and implemented in the model. Preliminary experimental analyses were also performed.
Keywords: Additive Manufacturing | Prediction Model | Surface Roughness
Abstract: Virtual prototyping is a strategic practice in the research and development of innovative products and machine tools. Virtual prototyping allows the integration of multidomain simulations into the designing process to replicate and analyze the impact of design choices on the overall system performance, reducing time-to-market while simultaneously improving quality. The current paper provided a methodological approach to model complex machine tools and perform virtual testing. As a use case for this study, a parallel kinematic machine (Pentapod P800, METROM Mechatronische Maschinen GmbH, Germany) is investigated. The adoption of these complex machine tools within the industrial context and the design of parallel kinematic machines can be eased by the implementation of methodologies capable of reducing efforts and risks during the analysis and the testing phases, prior to actual commissioning. In this scenario, virtual testing guarantees generality, completeness, and quick response. Therefore, the multibody model of the Pentapod P800 was developed following the proposed framework. Then, the simulation of a test trajectory was successfully carried out. The results show that this approach might lead to the design and implementation of a parallel kinematics machine reducing risks, time, and costs.
Keywords: Digital modelling | Multibody modelling | Parallel kinematic machines | Virtual prototyping
Abstract: This paper describes a robust design approach to optimize the design of smart shorts for muscle activity analysis. A practical application related to electromyographic shorts for monitoring six main thigh muscles is shown. Starting from a 2D digital model of a pattern block related to the shorts, a robust design approach is applied to optimize the design of textile electrodes for surface electromyography analysis in terms of size (i.e., diameter), and location (i.e., inter-electrode distance). The aim is to reduce the sensitiveness to noise factors (i.e., skin lubrication condition, anthropometric variability and gesture type) guaranteeing the best performance in terms of Signal Noise Ratio. The experimental campaign related to football activities allows the practical application of the proposed approach for the design of smart shorts for football. The results allow to define the optimal configurations for the six muscles of interest. This work might pave the way for the development of tailored smart garments for electromyography analysis.
Keywords: electromyographic system | human body scanning | robust design | wearable sensors
Abstract: Soft robots are increasingly advancing into heterogeneous contexts, however they still suffer from different sustainability issues including limited lifetime, disposal and poor energy efficiency. These issues severely limit their spread usage thus leading to the need for new materials and efficient actuation systems. The main goal of this work is to find out in scientific literature the main indicators concerning environmental sustainability in pneumatically actuated soft robots. To reach this goal, we used the PRISMA methodology to explore, in a systematic manner, available indices related to environmental dimension of sustainability. The indicators found are reported with the absolute and relative metrics adapted from the references and two proposed categorizations: i) one related to the part of soft robotic system, ii) the other one related to the LCA-oriented Product Lifecycle (PL) phase. The study highlights the lack in the literature of indicators related to energy consumption regarding environmental dimension of the manufacturing process, thus opening the possibility of future studies in this direction.
Keywords: Pneumatic actuation | Soft Robotics | Sustainability
Abstract: In this paper, two concepts of silicone–based pneumatic soft bending actuators with stiffening capability are presented and compared in terms of performances and sustainability. The first concept is a PneuNet bending actuator with a vacuum chamber, while the second one is a Fiber–reinforced bending actuator, again with a vacuum chamber. Both soft actuators are able to perform a bending movement and are able to increase their stiffness through layer jamming. The two concepts are first compared in terms of overall performances, namely bending behavior, capability to exert tip forces and stiffening capability. After, they are compared in terms of sustainability, through the analysis of the energy that they require for movement execution.
Keywords: performances | pneumatic soft actuators | Soft robotics | stiffening | sustainability
Abstract: Tip steering by induced deformation constitutes one of the most prominent feature to effectively navigate constrained environments with soft growing robots. In this work, we analyze the effects of design parameters on the tip steering capabilities of pneumatically-actuated soft growing robots built from fabric. More specifically, we consider the variability of material, fabric Pneumatic Artificial Muscles (fPAM) diameter, and backbone internal pressure and statistically quantify the effect on the maximum curvature achieved by the robot when a constant fPAM input pressure is applied. In our considered settings, we found a statistically significant main effect (p<0.05 ) of the fPAM diameter and a relevant interaction effect between this and the material factor. These findings provide useful guidelines for the design of fabric-based PAM-actuated soft growing robots with enhanced tip steering capabilities.
Keywords: Design of bioinspired soft robots | Soft actuators | Soft robotics
Abstract: Over the past years, a wide range of dental implants has been proposed. In general, the dentists may find the best solutions according to the specific needs of the patients. A variety of factors influences the level of osseointegration and, consequently, the anchorage of the implant to the bone. The stress transfer mechanism along the bone-implant interface depends upon the surface area of the bone-implant contact. Great efforts have been devoted to the design of 3D porous lattice structures with tailored architectural features in order to reduce the implant stiffness as well as to favour bone ingrowth, thus stabilizing the device. Accordingly, the aim of the current study was to provide further insight into the design criteria for dental implants. In particular, starting from a screw implant (Implant A), different concepts of dental implants were developed: i) Implants B1–B5, with lattice shell surrounding a solid core, without thread; ii) Implant C, with lattice structure; iii) Implant D as topography optimized implant. Finite element analysis on the several models of bone-implant provided interesting information in terms of stress distributions in cortical and trabecular bone. Some differences among the implants may be ascribed to the different design criteria.
Keywords: Dental implants | Design criteria | Finite element analysis | Lattice structure | Topography optimization | Topology optimization
Abstract: Factory acceptance test is the inspection of equipment and components at the supplier’s premises before delivery or final inspection. However, this control can represent a considerable cost for the customer, especially when the manufacturer’s company is geographically far from the customer one and inspections must be frequent. In this paper, the authors present a framework to support the factory acceptance test based on augmented reality (AR) techniques and model-based definition aimed at dimensional checks that does not require the physical presence of the customer at the supplier's premises. The supplier must be previously equipped with an automatic measuring machine. Once the component under inspection is placed inside the machine, this reads the type and the position of the features to be measured along with the related specification limits directly from the annotated 3D model of the component. The results are automatically transmitted to the customer’s site. Through a tablet, the supplier, guided by the customer, reads the results of the measures directly on the measured object through augmented or mixed reality techniques. Any out-of-specification dimension can be remeasured in real time with the customer’s remote assistance using traditional measurement techniques. The proposed architecture, at an advanced stage of experimentation, is discussed with reference to an industrial case study proposed and using an entry level commercial 3D scanner.
Keywords: Augmented reality | Dimensional inspection | Factory acceptance test | Metrology
Abstract: This work is focused on the development of a “serious game”, i.e., a software with no playful purpose adopted to train and verify the skills of users to improve safety in the workplace. Particular attention has been given to the accidents that occur during typical operations done in factory sites, e.g., driving forklifts. Firstly, the different types of “serious games” already available on the market have been analyzed to identify the best way to carry on tests and simulations by means of virtual, mixed, and augmented reality. Afterward, once the best solution has been identified, the Unity development environment has been considered to define a standard that could also be used for future projects. So, the result is the development of a powerful editor of the scene, in which the user can program all the components adjusting the game to the tasks to be performed by the worker, the tools, the environment and the targets. So, an upgradeable “parametric path” has been created, which will be followed by the forklift, realizing a new game and test environment for the worker. Then, modular components have been conceived to contemplate the future developments of the project, including a graphic editor: these will lead to a software that can be easily modified according to the customer’s requests.
Keywords: Occupational safety | Serious games | Virtual reality
Abstract: Preface and Acknowledgements (Editorial)
Keywords: Editorial
Abstract: This paper describes the design of a novel fabric–based antagonistic pneumatic actuator with multiple chambers that can be used for the development of soft continuum manipulators for collaborative tasks. The concept consists of three pneumatic chambers of fabric material capable of being actuated independently. By connecting multiple actuators of this kind, it is possible to obtain soft continuum manipulators capable of complex movements and able to change the stiffness of their elements. In this work we highlight the design and prototyping of the soft actuator and we present the preliminary experiments in terms of motion and stiffening capabilities.
Keywords: Fabric pneumatic artificial muscles | Soft actuators | Soft continuum manipulators | Soft robotics
Abstract: The paper focuses on a preliminary study of an easy-to-customize capacitive soft sensor to measure forces that can enable soft robot features like sensitive skins or permits dexterous object manipulation thanks to the perception of the grasping force. The prototype has been realized overlapping five different layers choose among commercial and easy to find materials. The sensor is completely composed by customized or self-produced parts. The stack definition involves compatibility test to define the correct combination of layers and adhesives. An evaluation of the behavior has been performed applying weights in the range [20–5800] g finding a mean sensitivity of 0.143 pF/kg over an initial value C0 of 3.151 pF. The sensor prototype showed good performance in term of sensitivity and hysteresis in the defined application range. Dielectric viscoelastic phenomena and decreasing repeatability have been observed in the upper part of the measuring range. The sensor proposed shows promising characteristics encouraging future developments.
Keywords: Capacitive force sensor | Conductive inks | Customizable force sensor
Abstract: In the Model-Based Enterprise (MBE) paradigm, digital product models are the primary source of information to support the design, analysis, and manufacturing of products. The master geometry of these product models is generally built procedurally in a CAD system, typically as history-based parametric geometry. However, some model conversion and exchange processes imply losing procedural information (i.e. the internal structure that represents how the model was built). In this position paper, we review the state of the art in procedural CAD model exchange and discuss an approach for conveying procedural information during model exchange. Although not available in practice, the approach is currently theoretically feasible, as the exchange of procedural information is already supported in modern neutral formats. Finally, we develop our position by advocating for defining Conformance Classes to facilitate the practical development of the ISO 10303 AP 242 standard, thus enabling official implementations that can provide full exchange capabilities for procedural CAD models.
Keywords: Neutral formats | Procedural CAD models | STEP
Abstract: Objective and reliable assessment of motor functions, such as dexterity, is a key point for evaluating worker’s abilities. In this context, the proposed work presents a tool for objective automatic assessment of the Minnesota Dexterity Test using cameras with depth sensors. Typical performance measurements (i.e., total time and associated percentiles) were estimated using custom algorithms. In addition, the possibility to identify the qualifiers for the code d440 of the International Classification of Functioning, Disability and Health was implemented in the developed algorithms. The proposed tool can also identify the mistakes most frequently committed by the subjects. To prove the capabilities of the proposed method, a series of experimental trials was conducted with 10 healthy young volunteers. Results showed that the developed tool helps clinicians to obtain performance feedback and evaluate patients’ dexterity quickly without bias.
Keywords: Automatic assessment | Biomechanics | Depth cameras | Manual dexterity | Motion capture
Abstract: This paper proposes a systematic approach for involving the clinicians in the design of medical devices, here used for the development of a soft robotic glove for rehabilitation. The approach considers the integration of different methodologies that take into account the emotional information of the clinicians considered as end–users (i.e. Kano–Kansei) and a deep analysis of the needs of both the patients and the clinicians (i.e. house of quality). Based on this user–centered approach, the paper develops different rehabilitation concepts realized through the technique referred to as design of experiments. Finally the optimal one is chosen re–involving the clinicians and using the ANOVA analysis.
Keywords: Hand rehabilitation | Product development | Soft robotics | User-centred design
Abstract: This paper presents the use of surface electromyographic (sEMG) signals for the actuation of soft pneumatic artificial muscles. The idea behind this paper is finding a relationship between a natural muscle and an artificial muscle, do it through an analysis of the sEMG data. We start from the characterization of a specific soft pneumatic artificial muscle and we relate the root mean square value of the sEMG signal to the contraction of the actuator itself. This work might pave the way for the development of intuitive wearable interfaces for the actuation of soft robots.
Keywords: Human biosignal | Soft actuators | Surface electromyographic sensors | Wearable technologies
Abstract: Design methods for sports engineering allow to improve the world around the athlete. In cycling, a sport device that can be useful to reduce and monitor the risk of injuries is a smart glove equipped with pressure sensors. The literature underlined how the current design methods lack the comprehensive consideration of sensors integration for force analysis at the handlebar. Furthermore, the majority of existing solutions is based on resistive pressure sensors. In this work, we present mainly two advancements with respect to the state-of-the-art: (1) user-centered design methodology for the glove development, which allows to take care about the main design parameters which involve the cyclist, namely her/his anthropometric characteristics and her/his sport gesture analysis (achieved by the pressure analysis on the handlebar) during classic grip position of cycling (i.e., top grip); (2) prototyping of custom-made capacitive pressure sensors instead of classic commercial resistive pressure sensors. The work involves the concept generation, the selection of the optimal concept through Kano and Quality of Function Development as well as the preliminary prototyping of one capacitive pressure sensor, realized using a fabrication process involving additive manufacturing techniques and silicon molding.
Keywords: capacitive sensors | human body scanning | injury risk | user-centered design
Abstract: Describing and supplementing geometric shapes (parts) and layouts (assemblies) with relevant information is key for successful product design communication. 3D annotation tools are widely available in commercial systems, but they are generally used in the same manner as 2D annotations in traditional engineering drawings. The gap between technology and practices is particularly evident in plain text annotations. In this paper, we introduce a functional classification of text annotations to provide an information framework for shifting traditional annotation practices towards the Model-Based Definition (MBD) paradigm. In our view, the current classification of dimensions, tolerances, symbols, notes, and text does not stress the inherent properties of two broader categories: symbols and text. Symbol-based annotations use a symbolic language (mostly standardized) such as Geometric Dimensioning and Tolerancing (GD&T) to provide precise information about the implications of geometric imperfections in manufacturing, whereas notes and text are based on non-standardized and unstructured plain text, and can be used to convey design information. We advocate that text annotations can be characterized in four different functional types (objectives, requirements, rationale, and intent), which should be classified as such when annotations are added to a model. The identification and definition of a formalized structure and syntax can enable the management of the annotations as separate entities, thus leveraging their individual features, or as a group to gain a global and collective view of the design problem. The proposed classification was tested with a group of users in a redesign task that involved a series of geometric changes to an annotated assembly model.
Keywords: Annotations | Model-based definition | Text annotations
Abstract: Helping workers return to work as soon as safe and functionally possible after a workplace injury is a subject of major interest in the context of occupational health. For this, we developed a serious game for construction industry aimed at training workers about the proper use of an electric pallet truck inside a simulated environment. The simulation platform is endowed with a physical control interface and three training missions were implemented. During the game experience, the player is also asked to answer to some questions about the possible risks and the related protection measures. The results of preliminary experiments about the usability of our training framework are here reported and discussed.
Keywords: learning | product interface design | serious games | usability assessment | virtual training
Abstract: In this paper we present the preliminary evaluation of an active soft bellow exoskeleton for assistance during overhead tasks. The evaluation was performed using objective (i.e., joint angles and muscle activations) and subjective (i.e., Borg Cr R-10 and System Usability Scale - SUS scales) measurements. The subject, involved in the experimental campaign, performed in laboratory conditions a drilling overhead task typical of the automotive industry, once using the exoskeleton and once without the exoskeleton. The preliminary results underlined the positive effect of the exoskeleton in terms of physical effort and usability.
Keywords: biomechanics | overhead tasks | soft exoskeletons | usability
Abstract: In this paper, we present a biomechanical analysis of the upper body, which includes upper-limb, neck and trunk, during the execution of overhead industrial tasks. The analysis is based on multiple performance metrics obtained from a biomechanical analysis of the worker during the execution of a specific task, i.e. an overhead drilling task, performed at different working heights. The analysis enables a full description of human movement and internal load state during the execution of the task, thought the evaluation of joint angles, joint torques and muscle activations. A digital human model is used to simulate and replicate the worker’s task in a virtual environment. The experiments were conduced in laboratory setting, where four subjects, with different anthropometric characteristics, have performed 48 drilling tasks in two different working heights defined as low configuration and middle configuration. The results of analysis have impact on providing the best configuration of the worker within the industrial workplace and/or providing guidelines for developing assistance devices which can reduce the physical overloading acting on the worker’s body.
Keywords: Biomechanics | Digital human models | Electromyography | Ergonomics | Industry | Overhead tasks
Abstract: This study evaluated the influence of distal implants angulation and framework material in the stress concentration of an All-on-4 full-arch prosthesis. A full-arch implant-supported prosthesis 3D model was created with different distal implant angulations and cantilever arms (30° with 10-mm cantilever; 45° with 10-mm cantilever and 45° with 6-mm cantilever) and framework materials (Cobalt–chrome [CoCr alloy], Yttria-stabilized tetragonal zirconia polycrystal [Y-TZP] and polyetheretherketone [PEEK]). Each solid was imported to computer-aided engineering software, and tetrahedral elements formed the mesh. Material properties were assigned to each solid with isotropic and homogeneous behavior. The contacts were considered bonded. A vertical load of 200 N was applied in the distal region of the cantilever arm, and stress was evaluated in Von Misses (σVM) for prosthesis components and the Maximum (σMAX) and Minimum (σMIN) Principal Stresses for the bone. Distal implants angled in 45° with a 10-mm cantilever arm showed the highest stress concentration for all structures with higher stress magnitudes when the PEEK framework was considered. However, distal implants angled in 45° with a 6-mm cantilever arm showed promising mechanical responses with the lowest stress peaks. For the All-on-4 concept, a 45° distal implants angulation is only beneficial if it is possible to reduce the cantilever’s length; otherwise, the use of 30° should be considered. Comparing with PEEK, the YTZP and CoCr concentrated stress in the framework structure, reducing the stress in the prosthetic screw.
Keywords: Dental implants | Finite element analysis | Polymers | Prosthodontics
Abstract: Additive manufacturing (AM) allows the development of novel and customized products with tailored properties. However, the application of extrusion-based AM techniques (i.e., fused deposition modeling – FDM) in the design of functional parts is often limited because of the poor mechanical performance as a consequence of the nature of the process to build the object in a layer-by-layer fashion. In the current study, the impact resistance of the 3D printed polyethylene terephthalate glycol-modified (PETG) and high impact polystyrene (HIPS) was evaluated as a function of three printing parameters (i.e., printing temperature, layer height and line width). Izod-type test specimens were fabricated and analyzed according to the ASTM D256. The contribution of each factor was properly analyzed. The results also indicated that the printing temperature was the most significant parameter for the impact resistance of 3D printed PETG and HIPS. The obtained findings may be considered as valid only within the limit of parameters and ranges investigated in the current study.
Keywords: Design of experiments | Fused deposition modeling | Impact resistance
Abstract: Nowadays, the commercial translation of additive manufacturing technologies for scaffolds fabrication is still a challenge. The production methodology of 3D scaffolds for tissue regeneration is a complex and discontinuous process involving several stages, from the isolation of the stem cells to the dynamic cell culture in vitro. Even though in this scenario industries are increasingly implementing automated robotic systems, current technologies are not enough to realize a large industrial scale scaffold fabrication. Accordingly, a relevant improvement could raise from the implementation of a modern collaborative workplace in an existing production line, combining strength endurance and accuracy of cobots, with intelligence, flexibility, and adaptability of the human being. Such a solution overcomes limits related to the low level of process control, low productivity, and risk of contaminations. Therefore, the current work proposes a systematic approach to the design of a collaborative workplace for biomanufacturing of 3D scaffolds. Starting from an overview of basic concepts on scaffolds for tissue engineering and additive manufacturing, as well as from an analysis of automation solutions in cell culture applications, a design methodology section is reported. The paper provides a further insight into the potentials to upscale the scaffolds manufacturing process, taking advantage of the huge possibilities given from the Human-Robot Collaboration and gives evidence of critical features for workplace definition.
Keywords: Automatic layout generation | Biomanufacturing | Human-Robot Collaboration (HRC) | Workplace design
Abstract: Applications as robotic harvesting or pick and place in the agrifood domain require robotic grippers able to gently manipulate delicate products, while guaranteeing high gripping power and adhesion forces on smooth surfaces. Existing soft grippers are mainly based on pneumatic bending actuators which can guarantee a gentle manipulation, but they suffer from low gripping power and possibility of slip of the manipulated object. This paper describes a novel design concept of soft robotic pneumatic gripper with embedded suckers. The concept consists of four soft fingers, each one comprising an elastomeric structure with two separate air paths, one for pressurizing the finger for generating bending motion, one for vacuum–based adhesion to the object’s surface via suction pads distributed along the surface of the finger. In this work we highlight the concept design of the mechanical system and the pneumatic control unit.
Keywords: Bioinspired design | Concept design | Soft grippers | Soft robotics
Abstract: The presented work shows how a user centered approach might be used to generate and select the optimal design of smart garments for biosignal acquisition. Design is driven by human biosignal analysis, allowing the translation of subjective user’s feelings into technical specification and the definition of customized criteria for concepts evaluation. So, different concepts are generated and, involving users again, the optimal one is chosen using multi criteria decision making based on Fuzzy AHP theory. A case study on a wearable system (i.e., electromyographic shorts) for football performance and risk injury analysis is shown.
Keywords: Biological knowledge in engineering science | User centered design | Wearable technologies
Abstract: In this study we propose a brief analysis of recent soft wearable robots for upper–limb which could have a major impact on future developments and applications. The systems are analysed with respect to: design concepts, actuation systems, sensing systems, control strategies and applications. Finally, a discussion and open issues are presented.
Keywords: Exoskeletons | Soft robotics | Wearable robotics
Abstract: The realization of nuclear fusion reaction as energy source is under investigation, among the scientific community, through the design and development of tokamak reactors. Among the several experiments worldwide, the ITER project is the major international experiment and it involves several research institutes from several countries. In such a project, a Systems Engineering (SE) approach is requested to organize and manage the design due to its highly integrated design, the safety requirements related to nuclear aspects and the complex procurement scheme. The SE discipline focuses the attention on the requirements which are crucial for every successful project, defining what the stakeholders want from a potential new system, namely what the system must do to satisfy stakeholders need. Correctly stating WHAT is needed for the system, it is possible to obtain its conceptual design (HOW) as much as possible complying the requirements. The incorrect definition of requirements often leads to the failing of a project. Stakeholders’ needs are written in Natural Language that is generally ambiguous, imprecise, incomplete and redundant. Their transformation into SMART requirements is crucial to avoid design failure. However, it requires a great expertise, unless a specific procedure is assessed. To this end, this work presents a specific procedure based on “like-mind” processes to make systematic the SMART requirements definition and assessment from stakeholders needs. The procedure is based on a demand/response framework and it is developed to obtain ITER requirements. However, it can be easily extended to every project using its own specifications. A specific case study on ITER Remote Handling is presented in this paper as example of the conceived requirements transformation procedure.
Keywords: ITER tokamak | Requirements engineering | SMART requirements | Systems engineering
Abstract: Titanium alloys (e.g., Ti6Al4V) have been widely considered for the design of biomedical implants. To avoid stress shielding effects, bone atrophy and implant loosening bone, 3D porous devices with controlled geometry and architecture should represent a promising solution. Several cellular structures were already investigated to obtain a wide range of mechanical properties. Many studies focused on the mechanical performance of diamond and body-centered-cubic. Different kinds of porous and semi-porous femoral stems were also proposed and analyzed. Accordingly, the aim of the current research was to provide further insight into the design of solid-lattice hybrid structures through a two-step process involving the classical and lattice topology optimization. A cementless femoral stem was considered as a case study. The solid isotropic material with penalization (SIMP) was used at varying values of the penalty factor and the effect of the geometrical features of each beam forming the lattice structure was also determined. Differences were found in terms of functional and structural performances according to the selected strategy for the design of the solid-lattice hybrid structures, as a consequence of the material distribution/layout and geometrical features.
Keywords: Biomedical applications | Solid-lattice hybrid structures | Topology optimization
Abstract: In this work we derive the requirements of a soft upper-limb exoskeletons starting from the biomechanical analysis of human workers while performing three different industrial overhead tasks in laboratory settings. The results of the work allow to define the degrees of freedom which need to be supported to reduce the biomechanical overloads, as well the dimensional characteristics, in terms of required lengths and forces, of the soft actuators of the wearable robot.
Keywords: Biomechanics | Design | Industrial tasks | Soft exoskeleton | Soft robotics | Wearable robotics
Abstract: Soft continuum robots are a new class of robotic devices, which are very promising for enabling measurement applications especially in remote, difficult-To-reach environments. In this work, we propose the use of a particular soft robot, which is able to evert and steer from the tip, as a sensor delivery system. The measurement system consists of two major sections: i) the robotic platform for movement purposes; and ii) the sensing part (i.e., a sensor attached to its tip to enable the measurement). As a case study of the use of the soft-growing robot as a sensor-delivery system, the transportation of a wireless temperature sensor towards a remote hot source was considered. The preliminary results anticipate the suitability of soft continuum robotic platforms for remote applications in confined and constrained environments.
Keywords: 4.0 Era | Monitoring systems | Remote Measurements | Remote monitoring | Sensors | Soft Growing Robots | Soft Robotics
Abstract: Titanium and its alloys are widely employed in commercial dental devices. Because the surface morphology and chemical composition of Ti-based dental implants play a relevant role in osseointegration, three different commercial threaded implants have been investigated by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). The Implants A and C were made of pure Ti whereas the Implant B was made of Ti6Al4V alloy. Obtained results evidenced the common features and differences due to specific process parameters used in the treatments of mordanting and sandblasting for surface roughening. Implant A exhibits a uniform surface covered by very small dimples of about 1–2 μm. The surface of Implant B is not homogeneous: The thread tops present an irregular morphology (dimples size >10 μm) while finer dimples (about 1 μm) are observed along the thread flanks and valleys. Implant C shows an irregular morphology with dimples of different sizes and shapes distributed on thread tops, flanks, and valleys. XPS analyses revealed the presence of metal oxides: TiO2 in all the implants; Al2O3 and V2O5 only in the implant B. Moreover, these results demonstrated that Mg2SiO4 is present on the surface of Implant A, probably due to a specific preparation process. Obtained results have been discussed on the basis of the factors promoting the osseointegration.
Keywords: dental implants | SEM | surface morphology | Ti6Al4V | titanium | XPS
Abstract: Soft continuum robots are a new class of robotic devices, which are very promising for enabling measurement applications especially in remote, difficult-to-reach environments. In this work, we propose the use of a particular soft robot, which is able to evert and steer from the tip, as a sensor delivery system. The measurement system consists of two major sections: i) the robotic platform for movement purposes; and ii) the sensing part (i.e., a sensor attached to its tip to enable the measurement). As a case study of the use of the soft-growing robot as a sensor-delivery system, the transportation of a wired thermocouple towards a remote hot source was considered. The preliminary results anticipate the suitability of soft continuum robotic platforms for remote applications in confined and constrained environments.
Keywords: Remote Measurements | Remote monitoring | Sensors | Soft Growing Robots | Soft Robotics
Abstract: High Strength Steels (HSS) are widely used in the automotive industry to reduce the vehicle’s weight and improve fuel efficiency. The press hardening process is used, for instance, to form and harden low-alloyed steel simultaneously. A deep understanding of the interfacial phenomena and the friction behavior at high temperatures is significant in describing the process, especially when considering Finite Elements (FE) analysis. In this paper, the results of a series of tensile friction tests carried out with aluminum-silicon coated low alloyed steel 22MnB5 for different values of drawing speed, temperature, and die pressure are investigated. All tests were conducted by a special test rig designed by the authors. Following the Surface Response Methodology approach, a Central Composite Design was used to identify the best fitting friction model that approximates the friction coefficient behavior depending on the main testing parameters. The identified model can explain up to 88% of the variability of the response variable and predict the friction coefficient with acceptable error. In conclusion, a FE multi-physical model of the tensile friction test, which combines a structural and a thermal analysis, was created and validated by LS Dyna software simulations.
Keywords: central composite design | friction | high strength steels | press hardening | response surface methodology | tensile friction test
Abstract: The innovation-driven Industry 5.0 leads us to consider humanity in a prominent position as the center of the manufacturing field even more than Industry 4.0. This pushes us towards the hybridization of manufacturing plants promoting a full collaboration between humans and robots. However, there are currently very few workplaces where effective Human–Robot Collaboration takes place. Layout designing plays a key role in assuring safe and efficient Human–Robot Collaboration. The layout design, especially in the context of collaborative robotics, is a complex problem to face, since it is related to safety, ergonomics, and productivity aspects. In the current work, a Knowledge-Based Approach (KBA) is adopted to face the complexity of the layout design problem. The framework resulting from the KBA allows for developing a modeling paradigm that enables us to define a streamlined approach for the layout design. The proposed approach allows for placing resource within the workplace according to a defined optimization criterion, and also ensures compliance with various standards. This approach is applied to an industrial case study in order to prove its feasibility. A what-if analysis is performed by applying the proposed approach. Changing three control factors (i.e., minimum distance, robot speed, logistic space configuration) on three levels, in a Design of Experiments, 27 layout configurations of the same workplace are generated. Consequently, the inputs that most affect the layout design are identified by means of an Analysis of Variance (ANOVA). The results show that only one layout is eligible to be the best configuration, and only two out of three control factors are very significant for the designing of the HRC workplace layout. Hence, the proposed approach enables the designing of standard compliant and optimized HRC workplace layouts. Therefore, several alternatives of the layout for the same workplace can be easily generated and investigated in a systematic manner.
Keywords: Digital layout optimization | Human–robot collaboration (HRC) | Knowledge-based approach (KBA) | What-if analysis
Abstract: Evidence regarding the effect of the onlay preparation design for different CAD/CAM restorative materials considering the preservation of cusps is lacking. Molars were 3D-modeled in four preparation designs for onlay restoration: Traditional design with functional cusp coverage (TFC), non-retentive design with functional cusp coverage (NFC), traditional design with non-functional cusp coverage (TNFC) and non-retentive design with non-functional cusp coverage (NNFC). The restorations were simulated with two CAD/CAM restorative materials: LD—lithium disilicate (IPS e.max CAD) and RC—resin composite (GrandioBloc). A 100 N axial load was applied to the occlusal surface, simulating the centric contact point. Von Mises (VM) and maximum principal (Pmax) stress were evaluated for restorations, cement layer and dental substrate. The non-retentive preparation design reduced the stress concentration in the tooth structure in comparison to the conventional retentive design. For LD onlays, the stress distribution on the restoration intaglio surface showed that the preparation design, as well as the prepared cusp, influenced the stress magnitude. The non-retentive preparation design provided better load distribution in both restorative materials and more advantageous for molar structure. The resin composite restoration on thenon-functional cusp is recommended when the functional cusp is preserved in order to associate conservative dentistry and low-stress magnitude.
Keywords: Biomechanics | Dental materials | Finite element analysis | Prosthodontics
Abstract: Objective: The aim of this study was to evaluate the influence of three different dental implant neck geometries, under a combined compressive/shear load using finite element analysis (FEA). The implant neck was positioned in D2 quality bone at the crestal level or 2 mm below. Methods: One dental implant (4.2 × 9 mm) was digitized by reverse engineering techniques using micro CT and imported into Computer Aided Design (CAD) software. Non-uniform rational B-spline surfaces were reconstructed, generating a 3D volumetric model similar to the digitized implant. Three different models were generated with different implant neck configurations, namely 0°, 10° and 20°. D2 quality bone, composed of cortical and trabecular structure, was modeled using data from CT scans. The implants were included in the bone model using a Boolean operation. Two different fixture insertion depths were simulated for each implant: 2 mm below the crestal bone and exactly at the level of the crestal bone. The obtained models were imported to FEA software in STEP format. Von Mises equivalent strains were analyzed for the peri-implant D2 bone type, considering the magnitude and volume of the affected surrounding cortical and trabecular bone. The highest strain values in both cortical and trabecular tissue at the peri-implant bone interface were extracted and compared. Results: All implant models were able to distribute the load at the bone-implant contact (BIC) with a similar strain pattern between the models. At the cervical region, however, differences were observed: the models with 10° and 20° implant neck configurations (Model B and C), showed a lower strain magnitude when compared to the straight neck (Model A). These values were significantly lower when the implants were situated at crestal bone levels. In the apical area, no differences in strain values were observed. Significance: The implant neck configuration influenced the strain distribution and magnitude in the cortical bone and cancellous bone tissues. To reduce the strain values and improve the load dissipation in the bone tissue, implants with 10° and 20 neck configuration should be preferred instead of straight implant platforms.
Keywords: Dental implants | Finite element analysis | Implant design | Strain distribution
Abstract: Measurement and monitoring systems (MMSs) are intrinsically part of 4.0 and, in particular, of cyber-physical systems (CPSs). However, by introducing the 4.0 enabling technologies into MMSs, also the vice versa can be accomplished, and MMSs can evolve into a cyber-physical measurement system (CPMS). Starting from this consideration, in the present work, a preliminary case study of a CPMS is presented: an innovative robotic platform to be used for measurement systems in confined and constrained remote environments. The proposed system is a soft growing robot that includes a robot base, to be placed outside the remote environments, and a robot body that accesses the site through growth. A pneumatic actuation mechanism enables the controllable growth of the system (through lengthening at its tip), as well as its controllable steering. The system can be equipped with sensors to enable remote monitoring tasks, or can be used to transport sensors in remote locations. The ultimate goal is to achieve a self-adapting, fully-autonomous, reliable and safe system for monitoring applications, particularly useful for the remote inspection of unknown and/or constrained environments.
Keywords: 4.0 | Inspection | Monitoring systems | Remote monitoring | Soft continuum robots | Soft growing robots
Abstract: Purpose: To evaluate the effect of different substrate stiffness [sound dentin (SD), resin composite core (RC) or metal core (MC)] on the stress distribution of a zirconia posterior three-unit fixed partial denture (FPD). Methods: The abutment teeth (first molar and first premolar) were modeled, containing 1.5 mm of axial reduction, and converging axial walls. A static structural analysis was performed using a finite element method and the maximum principal stress criterion to analyze the fixed partial denture (FPD) and the cement layers of both abutment teeth. The materials were considered isotropic, linear, elastic, homogeneous and with bonded contacts. An axial load (300 N) was applied to the occlusal surface of the second premolar. Results: The region of the prosthetic connectors showed the highest tensile stress magnitude in the FPD structure depending on the substrate stiffness with different core materials. The highest stress peak was observed with the use of MC (116.4 MPa) compared to RC and SD. For the cement layer, RC showed the highest values in the molar abutment (14.7 MPa) and the highest values for the premolar abutment (14.4 MPa) compared to SD (14.1 and 13.4 MPa) and MC (13.8 and 13.3 MPa). Both metal core and resin composite core produced adequate stress concentration in the zirconia fixed partial denture during the load incidence. However, more flexible substrates, such as composite cores, can increase the tensile stress magnitude on the cement.
Abstract: The aim of the present study was to investigate the effect of shrinking and no shrinking dental filling materials combination in posterior restorations under the combined effects of polymerization shrinkage and occlusal load by means of 3D Finite Elements Analysis. Six computer-generated and restored class I or class II cavities models of a lower molar were designed in the CAD software and evaluated according to the cavity and restorative procedure. Different shrinking and no shrinking adhesive materials combination with diverse Young’s modulus were considered. A food bolus was modeled on the occlusal surface replicating the chewing load using static linear analyses Polymerization shrinkage was simulated for the shrinking different restorative materials. The maximum principal stress was selected as analysis criteria. All models exhibited higher stresses along the dentine restoration interfaces with different magnitude and a similar stress trend along enamel restoration interface. Stress values up to 22 MPa and 19 MPa were recorded in the enamel and restoration, respectively. The use of elastic not shrinking material layer in combination with bulk fill composite reduced the stress magnitude in dentine and enamel to replace dental tissues. Class I and class II posterior cavities adhesively restored with shrinking filling material’s combination showed the most unfavorable stress concentrations and the multilayer technique is a promising restorative alternative in posterior adhesive restorations when deep dentin and enamel volumes are missing.
Keywords: Dental materials | Dental restoration failure | Finite element analysis | Shrinkage polymerization
Abstract: This research activity aims to develop new cycling gloves. A first step was focused on the definition of the functional requirements through user centred design methods. Since vibrations coming to the hand-arm system of a cyclist have a considerable effect a second step was concentrated on the analysis of hand-arm vibrations in road cycling. The paper shows results of laboratory tests executed for three different hand sizes, three different frequency ranges, with two different type of gloves and without gloves. Load conditions used for the test were determined with a former field test. Results obtained were analysed using Analysis of Variance (ANOVA), that showed no significant effect of existing gloves in reducing vibration transmissibility. This led to the need of new kind of cycling gloves that could reduce those vibrations and increase the cyclist’s comfort.
Keywords: Bioengineering | Cycling gloves | Design of experiments | Road cycling | Sport equipment | User centred design | Vibration transmission
Abstract: In this paper, we propose a user-centered approach for the design of ergonomic workplaces. The method is based on the evaluation of subjective opinions and objective measures from the worker, while performing the industrial tasks. The ergonomic design of industrial workplaces will have impact in reducing the musculoskeletal disorders of workers.
Keywords: Adaptable workplace | Human-oriented design | Industry 4.0 | Worker ergonomics
Abstract: Design process is usually based on past experiences and best practises which compose the company know-how. The challenge is to identify common patterns in the design solutions generated for different design problems. The present paper focuses on the identification of product patterns by using a graph-based approach. It deals with the designing of automotive gearboxes and with the development of an approach and a software tool aimed to support preliminary design and CAD modelling activities in gearbox designing. The approach is applied to two different architectures of manual transverse gearboxes characterized by two and three shafts. It aims at the identification of common design features through the detection of the directed graphs matching. A Matlab software tool for gearbox preliminary design is implemented according to the detected common features. The proposed approach and the developed software tool provide an effective way to keep and re-use company know-how, especially in the context of large automotive companies.
Keywords: CAD modelling | Graph theory | Graphical user interfaces | KBE | Product pattern
Abstract: Aircraft seat is rated as the most unsatisfying aspect of flying; understanding the main factors impacting on passenger’s evaluations can provide a concrete opportunity for airlines to improve seat comfort and thus enhance passenger satisfaction and loyalty. Although there is a great deal of interest, the research on effective assessment strategies for subjective comfort is still underdeveloped. In this study a model-based approach for the analysis of subjective comfort data is suggested. The model adopted can be interpreted as a parametric version of the psychological process generating comfort ratings. The proposed approach is exploited through a case study concerning comfort assessment of aircraft seats designed for regional flights.
Keywords: Aircraft seat comfort | Laboratory experiments | Subjective data analysis | Uncertainty
Abstract: BACKGROUND: Aircraft seating comfort has a significant impact on passenger on-board experience. Its assessment requires the adoption of well-designed strategies for data collection as well as appropriate data analysis methods in order to obtain accurate and reliable results. OBJECTIVES: This paper focuses on the assessment of aircraft seating comfort based on subjective comfort responses collected during laboratory experiments and taking into account seat features and passenger characteristics. METHODS: The subjective comfort evaluations have been analyzed using a model-based approach to investigate the relationship between overall seating comfort and specific seat/user characteristics. RESULTS: The results show that the overall seating comfort perception is significantly influenced by the thickness of the seat pan, the backrest position (upright or reclined), the age of the passenger and the passenger perception of being comfortably supported at the lumbar region. CONCLUSIONS: The adopted model-based approach allows the analysis of subjective seating comfort data taking into account their ordinal nature as well as the dependency between evaluations provided by the same subject.
Keywords: laboratory experiments | ordinal regression | repeated evaluations | Seat comfort
Abstract: 3D tooth models were virtually restored: flowable composite resin + bulk-fill composite (A), glass ionomer cement + bulk-fill composite (B) or adhesive + bulk-fill composite (C). Polymerization shrinkage and masticatory loads were simulated. All models exhibited the highest stress concentration at the enamel–restoration interfaces. A and C showed similar pattern with lower magnitude in A in comparison to C. B showed lower stress in dentine and C the highest cusps displacement. The use of glass ionomer cement or flowable composite resin in combination with a bulk-fill composite improved the biomechanical behavior of deep class II MO cavities.
Keywords: Adhesion | class II MO | loading | operative dentistry | polymerization shrinkage
Abstract: This paper deals with collaborative robotics by highlighting the main issues linked to the interaction between humans and robots. A critical study of the standards in force on human-robot interaction and the current principles on workplace design for human-robot collaboration (HRC) are presented. The paper focuses on an anthropocentric paradigm in which the human becomes the core of the workplace in combination with the robot, and it presents a basis for designing workplaces through two key concepts: (i) the introduction of human and robot spaces as elementary spaces and (ii) the dynamic variations of the elementary spaces in shape, size and position. According to this paradigm, the limitations of a safety-based approach, introduced by the standards, are overcome by positioning the human and the robot inside the workplace and managing their interaction through the elementary spaces. The introduced concepts, in combination with the safety prescriptions, have been organised by means of a multi-level graph for driving the HRC design phase. The collaborative workplace is separated into sublevels. The main elements of a collaborative workplace are identified and their relationships presented by means of digraphs.
Keywords: Anthropocentric approach | Collaborative environment | Digraph | Graph theory | Human-robot collaboration
Abstract: Nowadays, technology in sport plays an important role to help training and judgement processes. This study proposes the use of a wearable inertial system to derive novel biomechanical indices for the assessment of performance and infringements in race-walking. These indices are built from five inertial-based parameters: loss of ground contact time, loss of ground contact step classification, step length ratio, step cadence and smoothness. The biomechanical indices are customized for elite race-walkers, and represented on a radar chart for an intuitive analysis of performance and infringements. From the radar chart, a synthetic index regarding the athlete’s overall gesture is derived. The validation of the biomechanical indices is carried out in field tests, involving nine elite race-walkers wearing an inertial sensor located at the end of the column vertebra (L5–S1). A statistical analysis is used to determinate the quality and reliability of the proposed indices and of their representation. The results show that these biomechanical indices can be implemented on a wearable inertial system for assistance in training and judgement in race-walking.
Keywords: Biomechanics | Field tests | Graphical data analysis | Infringements | Performance | Race-walking | Wearable sensors
Abstract: In this paper we present novel biomechanical indices for site-specific assessment of injury risk in cycling. The indices are built from a multifactorial analysis based on the kinematics and kinetics of the cyclist from the biomechanical side, and muscle excitations and muscle synergies from the neurophysiological side. The indices are specifics for three body regions (back, knee, ankle) which are strongly affected by overuse injuries in cycling. We use these indices for injury risks analysis of a recreational cyclist, who offered to participate in the experiments. The preliminary results are promising towards the use of such indices for planning and/or evaluating training schedule with the final goal of reducing non-traumatic injuries in cycling.
Keywords: biomechanics | cycling | electromyography | injury risk | laboratory test
Abstract: A fast and objective evaluation of kinematic characteristics of an elite athlete's gesture is necessary for refining her/his performance. When the athlete has a reduced capacity and/or reliability of expression, as in the case of subjects with intellectual impairment, objective performance analyses are even more important. In this work, we present a preliminary study regarding performance analysis on sprint tests performed by elite athletes with intellectual impairment, wearing an inertial sensor at the bottom end of their vertebral column. In particular, we compare three different inertial-based algorithms for automatic detection of temporal events, in steady-state velocity phase, with respect to the benchmark values obtained through video analysis.
Keywords: functional sports assessment | inertial sensors | intellectual impairment | kinematic parameters | sprint test
Abstract: Excessive values of force on L5/S1 joint can cause work-related musculoskeletal disorders, such as low back pain. Currently, the reference solution for estimating such variables is the combination of optoelectronic system and force platform, used for calculating the bottom up inverse dynamics in laboratory settings. Here we propose and validate a novel, completely wearable solution, composed by twelve inertial measurement units and pressure insole sensors. We validate the wearable solution with respect to the output of the reference solution, with data collected simultaneously on a subject performing lifting and releasing tasks with two different loads. The results are encouraging towards the use of the wearable methodology, considering the great impact of such a solution in a real manufacturing scenario.
Keywords: biomechanical loads | ergonomics | motion analysis | occupational disease | wearable system
Abstract: People with intellectual impairment show low performances in motor control, especially in complex movements. Performance analysis methods, based on wearable inertial sensor, are often used in typical developed swimmers but have never been used in swimmers with intellectual impairment, for whom the use of quantitative systems would be even more important. This paper presents a case study conducted on freestyle swimmers from the functional evaluation project of the Italian Sport Federation for athletes with Intellectual Impairment (FISDIR). The tests were conducted by five Italian elite swimmers with intellectual impairment using a structured experimental protocol which foresees an inertial sensor located on the wrist. Key freestyle temporal and kinematic parameters were assessed. A high-speed camera was used as a benchmark to validate the inertial-based parameters. The preliminary results indicate that the proposed inertial-based approach correlates over 90% with the performance indices obtained with the camera-based approach, and therefore it could represent a useful tool for monitoring and improving the training.
Keywords: intellectual impairment | performance analysis | sports biomechanics | swimming | wearable inertial sensor
Abstract: This paper presents an innovative safety training method based on digital ergonomics simulations and serious games, which are games that focus on education. Digital ergonomics is intended to disseminate the culture of safety among workers, while serious games are used to train the operators on specific safety procedures and verify their skills. The results of the experimentation in a real industrial environment showed that, compared to the traditional training methodology, multimedia contents and quantitative ergonomic analyses improve the level of attention and the awareness of the workers about their own safety. However, serious games turned out to be promising training tools with regard to standard operating procedures that are usually difficult or dangerous to simulate in a real working scenario without stopping production. Practitioner summary: Digital ergonomics and serious games are used to disseminate the culture of safety among the workers and for safety training. Our results show that the proposed methodology improves the level of attention and provides a better feedback about the actual skills of the workers than the standard educational strategies. Abbreviations:.
Keywords: Digital humans | occupational safety | serious games | training methods
Abstract: Most occupational safety regulations and international standards recognize the importance of keeping a corporate document that set all the safety procedures prescribed for a certain workplace. However, experience show that, to be truly effective, any piece of information must be kept updated and correctly delivered to the right recipient. From this point of view, the possibility, given by modern technology, to receive, process and send information in real time using common smartphones is a great opportunity. The authors developed a solution for mobile devices, which is based on augmented reality technologies and indoor positioning algorithms, aimed at speeding up and simplifying the information flow among safety managers, workers and casual users about safety-related content. Safety managers can use it as a support tool for the preparation of the risk assessment documentation, on the workers' side, the same application acts as an informational tool providing safety-related content when and where needed through augmented reality technologies. Preliminary results from in situ testing show that augmented reality may be a powerful tool to improve the occupational safety.
Keywords: Augmented reality | Mobile technologies | Workplace safety
Abstract: Most occupational safety regulations and international standards recognize the importance of keeping a corporate document that set all the safety procedures prescribed for a certain workplace. However, experience show that, to be truly effective, any piece of information must be kept updated and correctly delivered to the right recipient. From this point of view, the possibility, given by modern technology, to receive, process and send information in real time using common smartphones is a great opportunity. The authors developed a solution for mobile devices, which is based on augmented reality technologies and indoor positioning algorithms, aimed at speeding up and simplifying the information flow among safety managers, workers and casual users about safety-related content. Safety managers can use it as a support tool for the preparation of the risk assessment documentation, on the workers’ side, the same application acts as an informational tool providing safety-related content when and where needed through augmented reality technologies. Preliminary results from in situ testing show that augmented reality may be a powerful tool to improve the occupational safety.
Keywords: Augmented reality | Mobile technologies | Workplace safety
Abstract: This research discusses the use of a systematic design method, the Iterative and Participative Axiomatic Design Process (IPADeP), for the early conceptual design stage of large-scale engineering systems. The involvement of multiple and competing requirements has imposed high challenges for achieving an affordable design of complex systems in a reasonable lead time. Systems Engineering (SE) focuses on how to design and manage complex systems over their life cycles. Both must begin by discovering the real problems that need to be resolved and identifying from the early stage of the design the main stakeholder requirements and customer needs. The Axiomatic Design (AD) methodology is widely recognized in the literature to efficiently support the design of complex systems from the early conceptual stage. IPADeP provides a systematic methodology for applying AD theory in the conceptual design of large-scale engineering systems, aiming to minimize the risks related to the uncertainty and incompleteness of requirements and to improve the collaboration of multi-disciplinary design teams. IPADeP has been adopted as design methodology in the pre-conceptual design stage of a subsystem of the DEMOnstration fusion power plant (DEMO): the divertor cassette body-to-vacuum vessel locking system. In this paper improvements in IPADeP are presented and its validity is discussed by presenting the application to the divertor system design.
Keywords: Axiomatic Design | Design methods | Systems Engineering | Tokamak design
Abstract: In the current research, an optimization design strategy for additive manufacturing processes based on extrusion/injection methods was extended to the fabrication of poly(ε-caprolactone) (PCL)/iron oxide (Fe3O4) scaffolds for tissue engineering. The attention was focused on four parameters: process temperature (PT), deposition velocity (DV), screw rotation velocity (SRV), slice thickness (ST). Specifically, PCL/Fe3O4 scaffolds were manufactured varying iteratively one parameter, while maintaining constant the other three parameters. A further insight into the influence of process parameters on the morphological features and mechanical properties of PCL/Fe3O4 scaffolds was provided.
Keywords: Design for additive manufacturing | Magnetic nanocomposite scaffolds | Mechanical and morphological properties | Tissue engineering
Abstract: This paper describes a mechanics–based framework for virtual prototyping of soft robots, i.e. robots with deformable bodies and flexible joints. The framework builds on top of the screw theory, and uses geometrically exact nonlinear beam models for describing the behavior of deformable bodies, as well as the finite element method for space discretization. The computer implementation of this framework results in SimSOFT, a physics engine for soft robots. The capabilities of the framework are illustrated with one general example, an articulated chain of rigid and soft links connected through rigid and flexible joints. Furthermore, several case studies are shown for industrial and medical applications.
Keywords: Continuum mechanics | Design methods | Multibody dynamics | Soft robotics | Virtual prototyping
Abstract: This paper shows how studies on the biomechanics and neuroscience of human movements might be used for the design of wearable systems customized for humans. Such design is driven by key biomechanical and neuromuscular parameters extracted from accurate measurements made on the human body motion, as well as by subjective data collected from the end-users of the products through questionnaires. We present three case studies developed at ERGOS Lab: a wearable system for sports performance analysis; a synergy-based approach for industrial wearable robots; a soft wearable robotic glove for hand rehabilitation.
Keywords: Biomechanics | Design methods | Neuromuscular activity | Wearable technology
Abstract: Unfortunately, the affiliation of one of the authors “Salvatore Gerbino” was incorrect in the original publication, and the correct version is updated here.
Abstract: This paper presents an interactive design method aimed at improving workplace health and safety. Human performances and anthropometric variability are carefully considered to make the workplace “robust” from a safety point of view. This topic is of increasing interest to industries that plan to make safer workplaces without renouncing to their productivity targets. A challenging issue concerns the evaluation of the effects of sources of anthropometric variability in the process by using just a small sample of real or digital humans. The adoption of a discretization technique helps to solve this problem and saving time and resources. Through real industrial case studies, the authors investigate the main ergonomic and safety issues faced during the development of both manual and human–robot hybrid workcells.
Keywords: Design methods | Digital human modelling | Human–robot interaction | Robust design | Virtual ergonomics | Virtual safety
Abstract: Objectives: To investigate the influence of different resin composite and glass ionomer cement material combinations in a “bi-layer” versus a “single-layer” adhesive technique for class I cavity restorations in molars using numerical finite element analysis (FEA). Materials and Methods: Three virtual restored lower molar models with class I cavities 4 mm deep were created from a sound molar CAD model. A combination of an adhesive and flowable composite with bulk fill composite (model A), of a glass ionomer cement with bulk fill composite (model B) and of an adhesive with bulk fill composite (model C), were considered. Starting from CAD models, 3D-finite element (FE) models were created and analyzed. Solid food was modeled on the occlusal surface and slide-type contact elements were used between tooth surface and food. Polymerization shrinkage was simulated for the composite materials. Physiological masticatory loads were applied to these systems combined with shrinkage. Static linear analyses were carried out. The maximum normal stress criterion was adopted as a measure of potential damage. Results: All models exhibited high stresses principally located along the tooth tissues–restoration interfaces. All models showed a similar stress trend along enamel–restoration interface, where stresses up to 22 MPa and 19 MPa was recorded in the enamel and restoration, respectively. A and C models showed a similar stress trend along the dentin-restoration interface with a lower stress level in model A, where stresses up to 11.5 MPa and 7.5 MPa were recorded in the dentin and restoration, respectively, whereas stresses of 17 MPa and 9 MPa were detected for model C. In contrast to A and C models, the model B showed a reduced stress level in dentin, in the lower restoration layer and no stress on the cavity floor. Significance: FE analysis supported the positive effect of a “bi-layer” restorative technique in a 4 mm deep class I cavities in lower molars versus “single-layer” bulk fill composite technique.
Keywords: 3D-finite element analysis | GIC | Resin composites | Shrinkage | Stress
Abstract: The key findings about the use of a MOOC (Massive Open Online Course) at University of Naples Federico II are shown. In particular, the Engineering Drawing course for Industrial Engineering students was the pilot to evaluate the benefits of new Web-Based Platforms and Environments in higher education. The combination of In-Class and On-Line lessons is defined “Blended Course” and can be attended by students both in traditional classrooms and On-Line. It was provided during the last four academic years allowing the use of new tools (e.g., multimedia contents, interactive files). Thanks to about 7000 students involved in this project, several data were gathered for statistics and analysis purposes. Therefore, the access to the MOOC was monitored and the correlation with the homework was examined. At the end of the course, the level of satisfaction of the students about the interaction with the new platform was evaluated. The analysis of the results provided useful hints for the updating of the course in order to improve skills and interactive experience.
Keywords: Distant learning | eLearning | Engineering design education | Interactive learning
Abstract: Products aimed at individuals with disabiliy could not match user requirements under conditions imposed by the user. Also, frequent modifications and adaptation are required to increase the match between user requirements and prototypes. The importance to test different solutions and gain a knowledge base is an important aspect as the time in trials and experimentation is still a limit of personalized devices. An experimentation is conducted to test a solution of hardware interface for an Augmentative and Alternative Communication System which implements visual feedbacks and visual tutorial in training phase. In this study, visual feedbacks demonstrate an improvement of performances due to three main effects: reducing training time through an interactive tutorial, improving automatic behaviour and limiting cognitive load. The prototypes are realized using open-source electronic boards and Additive Manufacturing to realize the housing. A usability test is performed to calculate metrics and benchmark solutions with and without visual aids. Measures of Lostness and Keystroke Level Model estimates the effectiveness of software interface and interaction of users with hardware and software interfaces.Also, this study can lead to the definition of an adaptive switch that modify its status in order to eliminate redundant operations and ineffective actions.Visual feedback has proven some advantages in training user and Additive Manufacturing enabled the study and lead the way for devices that are adaptive on software interface and control and personalized in the hardware interface.
Keywords: augmentative and alternative communication | biomedical devices | usability
Abstract: Advanced measurement systems and techniques from neuroscience are used in this work to extrapolate reduced- order muscle activation patterns corresponding to the execution of overhead tasks classic of automotive industry. The approach is based on the analysis of electromyographic (EMG) signals measured from muscles of the upper limb. The preliminary experiments show that, for the selected tasks, one muscle synergy could account for > 98% of the total muscle activation. This approach might pave the way towards the development of bionic, synergy-based upper limb wearable robots for augmenting human performances in industrial workplaces.
Keywords: EMG | muscle synergies | wearable robots
Abstract: The musculoskeletal disorders represent one of the most common problems in industrial environment; they impact the health of workers and employees. In this work we present a preliminary study towards the use of biomechanical models for improving classic methods for ergonomic assessment in industry. To this end, we use OpenSim, a software for biomechanical simulation and analysis. With OpenSim, we reconstruct the human motion corresponding to the execution of industrial tasks, performed in laboratory settings. In particular, we compute the evolution over time of the joint angles that, according to a classic observation method for ergonomic assessment, are needed to evaluate the risks associated to the musculoskeletal disorders for the upper limb.
Keywords: biomechanics | digital human model | ergonomics | industry
Abstract: The present paper deals with collaborative robotics and proposes to enable collaborative workstations by means of the critical study of the in-force standards on Human Robot Cooperation. The paper introduces the anthropocentric paradigm and presents a new basis for designing workstation composed by two key concepts: (i) human and robot spaces are elementary spaces able to generate all other spaces; (ii) dynamic variations of the elementary spaces in terms of shape, size and position occur. Moreover, dynamic positions of human and robot spaces enable collaborative operations in case of mobile robots.
Keywords: anthropocentric design | dynamic workspace | human-robot interaction | safety
Abstract: In this work we present a study for the experimental reconstruction of the human shoulder torque in the sagittal plane, since this is usually overloaded in industrial overhead tasks. To this end, we measure the three-dimensional motion of the human upper limb while performing selected movements using an optical motion capture system. Then, using a skeleton model implemented in one of the most common software for industrial ergonomic assessment, we reconstruct the shoulder angle and torque in the sagittal plane. A possible exploitation of this reconstruction strategy is presented for active compensation of this torque. The implementation of this simple strategy in a custom developed assistive device could augment human workers in performing repetitive jobs.
Keywords: biomechanics | digital human models | human motion analysis | industrial assistive devices
Abstract: In this work we will show some preliminary results on the use of a wearable inertial system for assessment of performances and infringements in race-walking. The proposed system is composed by two parts, one for measurement and one for management purposes. The management unit is based on biomechanical-based parameters for evaluating performances and infringements. The preliminary experimental results are promising towards the use of this system in real field training and competition scenarios, to respectively assist coaches and judges.
Keywords: race-walking | sports biomechanics | wearable inertial sensors
Abstract: High accuracy digitalisation of geometric models, related to big size objects, usually is performed by means of multiple acquisitions from different scanning locations. It needs to correctly place the acquired point clouds in 3D digital environment. For this purpose, it is very important identifying the exact scanning location in order to correctly realign point clouds and automatically generate an accurate 3D CAD model. The present paper focuses on design and prototype of a mobile handling device for reverse engineering scanning systems, named Dedalo. It is able to locate itself using a sensor fusion method based on a Kalman Filter. The sensor equipment is composed by wheel encoders and an ultrasonic sensor for measuring the distance from a known reference. Although Dedalo is equipped with low-cost hardware, results have showed a location accuracy by 0,1% error/meter, better than each sensor accuracy.
Keywords: Kalman filter | Position measurement | Product design | Prototypes | Reverse Engineering | Sensor data fusion
Abstract: Purpose: To examine the influence of different bulk and block composite and flowable and glass-ionomer material combinations in a multi-layer technique and in a unique technique, in deep Class I dental restorations. Methods: 3D CAD of the sound tooth were built-up from a CT scan dataset using reverse engineering techniques. Four restored tooth models with Class I cavity were virtually created from a CAD model of a sound tooth. 3D-finite element (FE) models were created and analyzed starting from CAD models. Model A with flowable resin composite restoring the lower layer and bulk-fill resin composite restoring the upper layer, model B with glass-ionomer cement (GIC) restoring the lower layer and bulk-fill resin composite restoring the upper layer, model C with block composite as the only restoring material and model D with bulk-fill resin composite as the only restoring material. Polymerization shrinkage was simulated with the thermal expansion approach. Physiologic masticatory loads were applied in combination with shrinkage effect. Nodal displacements on the lower surfaces of FE models were constrained in all directions. Static linear analyses were carried out. The maximum normal stress criterion was used to assess the influence of each factor. Results: Considering direct restoring techniques, models A, B and D exhibited a high stress gradient at the tooth/restorative material interface. Models A and D showed a similar stress trend along the cavity wall where a similar stress trend was recorded in the dentin and enamel. Model B showed a similar stress trend along enamel/restoration interface but a very low stress gradient along the dentin/restoration interface. Model C with a restoring block composite material showed a better response, with the lowest stress gradient at the dentin, filling block composite and enamel sides.
Abstract: Light activated composites are the most popular choice in the field of dental restoration. They generally show internal stress even after a prolonged time period. The knowledge of mechanical properties and residual stress should provide interesting information on the clinical performance of such materials. Accordingly, in the current research experimental analyses were carried out to assess the effect of the curing process on the properties of one of the most commonly employed light activated dental composites (Gradia Direct—GC Corporation, Japan). At 10 min, 1 h and 24 h after light curing, the bending modulus (4.7–6.2 GPa) as well as the punching performance (peak load of 12.1–17.5 N) were evaluated for the micro-hybrid composite. Scanning electron microscopy also allowed to analyze the fracture surface. Residual stresses ranging from 0.67 ± 0.15 MPa to 1.12 ± 0.17 MPa were measured by means of the thin-ring-slitting approach reported in the literature, according to measurement time and cutting time.
Keywords: CAD/CAM system | Dental materials | Mechanical and morphological properties | Residual stress
Abstract: This paper focuses on the comparative assessment of comfort and discomfort (hereafter, (dis-)comfort) for aircraft seating. Subjective and objective data of seating (dis-)comfort were collected during an experiment involving 20 volunteers who tested 3 aircraft double-seats in upright and reclined position. In order to minimize experimental uncertainty due to well-known noise factors (i.e. patterns of discomfort during the work week and during the work day, order of evaluation, inter-individual differences), experimental trials were performed according to a crossover design. Statistical data analysis aimed mainly at investigating (dis-)comfort differences across seat conditions; gender-based differences in perceived discomfort on different body parts; effect of sitting duration on perceived discomfort on different body parts. The experimental results show that differences across seat conditions impacted differently on perceived discomfort depending on gender, body parts and sitting duration. No significant differences in perceived discomfort across gender were evident for the lightweight seat in both upright and reclined positions. On the contrary, for both baseline configurations, perceived discomfort at head and neck areas was higher for males than for females. For all seat conditions, participants experienced a significant worsening of perceived comfort over time at shoulders, back, sacrum and thighs and, in addition, at upper body area (i.e. neck, arm and forearm) and knees only for seats in reclined position.
Keywords: Aircraft seat | Discomfort index | Seating comfort | Seating discomfort
Abstract: We propose to use an industrial redundant manipulator (KUKA LBR iiwa robot) as a haptic device to provide high force feedback for an orthopedic surgeon while performing the reaming of the acetabula in a virtual environment. Real experiments have been performed to validate the virtual reality training framework. The results show that the system resulted to be intuitive and reliable from the users experience.
Keywords: medical robotics force feedback virtual reality training
Abstract: The complexity of the interaction between user and computer can limit usability in products. When products are aimed at individuals with disability, the complexity increases the cognitive load and can reduce performances. The identification of interaction models and usability issues plays a role in product development as it enables designers to reduce this complexity. Methodology to identify lacking areas in products are required and permits to correct issues leading to an improvement of performances. A custom Augmentative and Alternative Communication system was developed for a student of the University of Naples Federico II. The user has complex communication needs and motor impairments and requires a personalized device to communicate. To promote an efficient interaction, hardware and software interfaces were personalized. Several studies were conducted: a usability evaluation, determination of the learning rate and Hardware/Software layout optimization were used to reduce the cognitive demands required by the system in its functioning. In this paper the HW layout optimization is investigated and strategies to reduce the cognitive load modifying order and position of the sensors of the input peripherals are provided.
Keywords: Augmentative and Alternative Communication | Human-Computer Interaction | Usability Testing
Abstract: In a complex case of speech disorder, the communication is entrusted to systems equipped with a speech synthesizer. When the user has a motor disability, in addition, hardware and software interfaces are personalized to make technology more accessible. Interaction design methods can be applied to develop improved assistive systems and, particularly, for Augmentative and Alternative Communication (AAC). Interaction design methods and usability evaluation could have a positive impact in reducing product barriers and improving performances as the effort state associated to its use can be reduced. Minimizing cognitive and physical efforts through the development of new solutions and interface optimization can be challenging. A usability test and an interface optimization of a personalized AAC system developed for a student of the University of Naples Federico II with complex communication needs due to a traumatic injury and motor impairment are discussed to fix usability issues, highlight critical areas and design new prototypes.
Keywords: Augmentative and alternative communication | Biomedical devices | Disability | Interaction design | Learnability | Usability
Abstract: Meeting the demands of Industry 4.0 and Digital Manufacturing requires a transformative framework for achieving crucial manufacturing goals such as zero-defect production or right-first-time development. In essence, this necessitates the development of self-sustainable manufacturing systems which can simultaneously adapt to high product variety and system responsiveness; and remain resilient by rapidly recovering from faulty stages at the minimum cost. A Closed-Loop In-Process (CLIP) quality control framework is envisaged with the aim to correct and prevent the occurrence of quality defects, by fusing sensing techniques, data analytics and predictive engineering simulations. Although the development and integration of distributed sensors and big data management solutions, the flawless introduction of CLIP solutions is hindered specifically with respect to acquiring and providing in-process data streams at the required level of: (1) veracity (trustworthiness of the data); (2) variety (types of data generated in-process); (3) volume (amount of data generated in-process); and, (4) velocity (speed at which new data is generated in-process) as dictated by rapid introduction and evolution of coupled system requirements. This paper illustrates the concept of the CLIP methodology in the context of assembly systems and highlights the need for a holistic approach for data gathering, monitoring and in-process control. The methodology hinges on the concept of “Multi-Wave Light Technology” and envisages the potential use of light-based technology, thereby providing an unprecedented opportunity to enable in-process control with multiple and competing requirements. The proposed research methodology is presented and validated using the development of new joining process for battery busbar assembly for electric vehicles with remote laser welding.
Keywords: Battery busbar assembly | Closed-loop in-process quality control | Multi-level requirements | Multi-wave light technology | Remote laser welding
Abstract: First aim of this paper is to describe a methodology developed to create virtual fragments of archeological archetypes in CAD (Computer Aided Design) environment. A simple Reverse Engineering (RE) technique was adopted to reconstruct the shape of vases allowing the archeologists, and so the CAD inexpert personnel, to use it. Moreover, another relevant aspect is the definition of a procedure to simulate shape errors on the virtual prototypes to make more realistic the results. The characteristics of the fragments to be reproduced were selected by means of Design of Experiment (DOE) techniques. So, an algorithm was implemented to simulate the shape error, related to the working operations, that represents the typical noise for the feature recognition of archeological findings. Furthermore, this algorithm can make more complex the hypotheses related to the Gaussian model of simulation of the error and can adapt the value of the shape error (i.e. increasing it) according to the data gathered in archaeological excavation. The case study was based on the definition of a catalogue of archetypes of the black Campanian vases studied and classified by the archeologist J.P. Morel. The procedure conceived was applied to five (among one hundred) vases of the virtual catalogue obtaining forty instances of fragments affected by errors and so creating virtual mock-ups of typical pieces which may be found in the archeological site considered for the case study.
Keywords: Archetype | Design of experiments | Geometric modeling | Profile reconstruction | Simulation of the shape and recognition errors
Abstract: The current research was focused on a further insight into the mechanical properties of 3D parts printed with virgin and recycled polylactic acid (PLA). A first set of specimens was printed with virgin PLA lament and mechanically tested. Such specimens were then ground up and re-extruded into filament using a homemade extruder. The re-extruded filament was employed to manufacture a new set of specimens which were also analysed. Three recycling processes were performed to assess the effect on the mechanical properties. The obtained results suggested that 3D printing with recycled PLA may be a viable option.
Keywords: Additive Manufacturing | Mechanical properties | Recycled polymers
Abstract: This work focuses on an innovative training methodology based on the use of Virtual ergonomics and “serious games” in the field of occupational safety. Virtual Ergonomics was chosen as an effective and convincing tool for disseminating the culture of safety among the workers, while a “serious game” was developed to train operators on specific safety procedures and to verify their skills. The results of the experimentation in a real industrial case study showed that, compared to the traditional training methodology, multimedia contents and quantitative ergonomic analyses improve the level of attention and the awareness of the operators about their safety. On the other hand, Serious games turned out as promising tools to train the workers about safe operating procedures that are difficult to implement in a real working environment.
Keywords: Ergonomics | Occupational safety | Serious game | Virtual humans | Virtual reality
Abstract: In this paper we present the design, prototyping and validation of a novel adjustable foot stretcher for indoor rowing training. The overall process is user-centered, in the sense that the athletes are directly involved in all the phases of the product development, from conceptual design to evaluation and validation. The conceptual design starts from well-known rowers needs. Accordingly, two design factors are selected to parametrize the prototype, namely the inter-axle spacing feet and the foot angle. The experimental evaluation and validation involve two phases, one based on a quantitative analysis of the performance, one based on subjective questionnaires submitted to the athletes. The performance-based analysis comprises the derivation of three pressure indices and one power transmission index. Indeed, the subjective analysis regards the users comfort and power transmission feelings. The results of both evaluations testify that an improvement in performance and comfort of the indoor rowing training session can be achieved.
Keywords: Performance evaluation | Robust design | Sports engineering | Sports equipment and technology | User-centered design
Abstract: Effective identification of the optimal design in the early stages of product development is critical in order to obtain the best chances of eventual customer satisfaction. Currently, the advancements in prototyping techniques offer unique chances to evaluate the features of different design candidates by means of product experts acting as assessors and/or customers enrolled as testers. In this paper, the candidate identification using virtual and physical prototypes is described and a practical fuzzy approach toward the evaluation of the optimal design is presented. The proposed methodology is tested on a full case study, namely the choice of optimal design for the traditional Neapolitan coffeemaker, inspired by the prototypes of the Italian designer Riccardo Dalisi. Several concepts are developed in a virtual environment and four alternatives among them are realized using Additive Manufacturing. By allowing experts to interact with virtual and physical prototypes, they were able to express their opinion on a custom fuzzy evaluation scale (i.e. they were freely choosing more or less coarse linguistic scales as well as the related shapes of fuzzy sets to adequately represent the level of fuzziness of their judgments). Once the opinions are collected, the set of best candidate(s) is easily identified and useful suggestion can be obtained for further developing the product.
Keywords: Additive manufacturing | Concept design | Concept selection | Design method | Fuzzy set | Virtual prototyping
Abstract: The purpose of this paper is to assess the main effects on the geometric errors in terms of flatness, circularity and cylindricity based on the size of the printed benchmarks and according to the position of the working plane of the 3D printer. Three benchmark models of different sizes, with a parallelepiped and cylinder shape placed in five different positions on the working plane are considered. The sizes of models are chosen from the Renard series R40. Benchmark models are fabricated in ABS (Acrylonitrile Butadiene Styrene) using RepRap Prusa i3 3D printer. A sample of five parts for each geometric category, as defined from the R40 geometric series of numbers, is printed close to each corner of the plate, and in the plate center position. Absolute Digimatic Height Gauge 0–450 mm with an accuracy of ± 0.03 mm by Mitutoyo is used to perform all measurements: flatness on box faces, and circularity/cylindricity on cylinders. Results show that the best performances, in terms of form accuracy, are reached in the upper-left printable area while they decrease with the sample size. Being quality a critical factor for a successful industrial application of the AM processes, the results discussed in this paper can provide the AM community with additional scientific data useful to understand how to improve the quality of parts which may be obtained through new generations of 3D printer.
Keywords: Additive manufacturing | Fused deposition modelling | GD&T | Geometric errors
Abstract: Over the past few years, foam materials have been increasingly used in the passive safety of sport fields, to mitigate the risk of crash injury. Currently, the passive safety certification process of these materials represents an expensive and time-consuming task, since a considerable number of impact tests on material samples have to be carried out by an ad hoc testing apparatus. To overcome this difficulty and speed up the design process of new protective devices, a virtual model for the low-velocity impact behaviour of foam protective mats is needed. In this study a modelling approach based on the mesh-free Element Galerkin method was developed to investigate the impact behaviour of ethylene-vinyl acetate (EVA) foam protective mats. The main advantage of this novel technique is that the difficulties related to the computational mesh distortion and caused by the large deformation of the foam material are avoided and a good accuracy is achieved at a relatively low computational cost. The numerical model was validated statistically by comparing numerical and experimental acceleration data acquired during a series of impact events on EVA foam mats of various thicknesses. The findings of this study are useful for the design and improvement of foam protective devices and allow for optimizing sports fields' facilities by reducing head injury risk by a reliable computational method.
Keywords: EFG method | Foam protective mats | Impact testing | Sports safety
Abstract: Objectives: To assess conceptual designs of dental posts consisting of polyetherimide (PEI) reinforced with carbon (C) and glass (G) glass fibers in endodontically treated anterior teeth. Methods: 3D tessellated CAD and geometric models of endodontically treated anterior teeth were generated from Micro-CT scan images. Model C-G/PEI composite posts with different Young's moduli were analyzed by Finite Element (FE) methods post A (57.7 GPa), post B (31.6 GPa), post C (from 57.7 to 9.0 GPa in the coronal–apical direction). A load of 50 N was applied at 45° to the longitudinal axis of the tooth, acting on the palatal surface of the crown. The maximum principal stress distribution was determined along the post and at the interface between the post and the surrounding structure. Results: Post C, with Young's modulus decreasing from 57.7 to 9.0 GPa in the coronal–apical direction, reduced the maximum principal stress distribution in the restored tooth. Post C gave reduced stress and the most uniform stress distribution with no stress concentration, compared to the other C-G/PEI composite posts. Significance: The FE analysis confirmed the ability of the functionally graded post to dissipate stress from the coronal to the apical end. Hence actual (physical) C-G/PEI posts could permit optimization of stress distributions in endodontically treated anterior teeth.
Keywords: CAD | Dental materials | Design | Endodontic treatment | Finite Element analysis | Image analysis
Abstract: In this work is exploited the possibility to use two optical techniques and combining their measurements for the 3D characterization of different tyres with particular attention to the tyre's section. Electronic Speckle Pattern Interferometry (ESPI) and Laser Scanner (LS) based on principle of triangulation have been employed for investigating and studying the tyre's section and 3D shape respectively. As case studies two different racing tyres, Michelin S9H and Pirelli Diablo respectively, have been considered. The investigation has been focused at the aim to evaluate and measure the section's components in order to add to the 3D model obtained by Laser Scanning accurate information about the different layers along through the tyres sections. It is important to note that the assessment about the different layers along the section is a very difficult task to obtain by visual inspection or classical microscopy and even with the LS. Here we demonstrate that the different layers can be easily highlighted and identified by mean of the ESPI.
Keywords: Holography | Laser scanner | Non-destructive testing | Speckle | Tyre characterization | Tyre layer thickness measurement
Abstract: In the past few years, a new generation of additive manufacturing (AM) techniques has rapidly become available due to the expiration of some AM patents which allowed significant cost reductions. This article explores some available techniques fostering products innovation in experimental laboratories for the development of naval propulsion, where high costs represent an important limitation for both basic research and industrial testing, by identifying significant knowledge and variables and by providing reliable and accurate data to support designers and researchers. The propeller INSEAN E779a case study was taken into account and fabricated by direct metal laser sintering in AlSi10Mg aluminium alloy and by fused deposition modeling in acrylonitrile–butadiene–styrene, and UltraT polymeric materials. The study of printing parameters, flexural tests, differential scanning calorimetry and thermogravimetric analysis, allowed to optimize the printing process conditions. A reverse engineering system, Faro-CAM2, and the iterative closest point algorithm of the geomagic control software were used to analyse deviations from the printed propeller and the CAD nominal model. The atomic force microscopy test allowed to assess the morphological features and surface roughness of printed propellers. Towing Tank tests were carried out and the hydrodynamic performance comparison was analysed in terms of torque and drag. The results of this study show differences between the benchmark and AM propellers, as a function of the advance coefficient J, the morphological characteristics and the materials. However this study also shows a substantial adequacy of AM propellers in most studies carried out in Towing Tank.
Keywords: Additive manufacturing (AM) | Marine propeller | Reverse engineering (RE)
Abstract: Additive Manufacturing technologies allow for the direct fabrication of lightweight structures with improved properties. In this context, Fused Deposition Modelling (FDM) has also been considered to design 3D multifunctional scaffolds with complex morphology, tailored biological, mechanical and mass transport properties. As an example, poly(ε-caprolactone) (PCL), surface-modified PCL and PCL-based nanocomposite scaffolds were fabricated and analysed. The effects of structural and morphological features (i.e., sequence of stacking, fiber spacing distance, pore size and geometry), surface modification and nanoparticles on the in vitro biological and mechanical performances were investigated.
Keywords: Additive Manufacturing | Design | Mechanical and Functional Analyses | Scaffolds
Abstract: The paper deals with the problem of tolerance specification and, in particular, proposes a graph-based method and a preliminary software tool: (i) to accomplish the tolerance specification for a mechanical assembly; (ii) to verify the consistency of the specification and, (iii) to allow the tracing of relationships among parts and features of the assembly. The method adopts Minimum Reference Geometric Elements (MRGE), directed graphs (di-graphs) and a set of dedicated algorithms to tackle the problems of consistency that occur during an interactive tolerance specification activity. Finally, an application illustrates the proposed method and its actual implementation.
Keywords: Datum | GD&T | graph theory | MRGE | tolerance specification
Abstract: In the field of movement disorders, each disabled person is different for both motor performance for functional requirements and expectations. This paper describes the development of a personalized device for a student with spastic quadriplegia at Federico II. This device is an Alternative Augmentative Communication system and it consists of hardware and software, which have been adapted to the individual characteristics of the student. According to participatory design and using the task analysis, we proceed to the hardware prototyping and to the software interface improving. An approach based on Analytic Hierarchy Process and Multiple-Criteria Decision Analysis is used. Tests under laboratory conditions are performed for evaluating the usability index of the device. Considering the data analysis, some critical issues are identified. The knowledge acquired in the case study is a point of strength of the proposed paper because it can be re-used for other persons with severe motor disabilities to improve their inclusion, integration and participation and to carry out tasks in different areas of application with minimum stress and maximum efficiency and effectiveness.
Keywords: Alternative augmentative communication | Participatory design | Spastic quadriplegia | Usability assessment
Abstract: The objective of the work is to describe the design and the realization of a virtual simulator of a metropolitan railway cockpit, aimed at improving the perception of safety by means of tests made by users in Virtual Reality, analysed through statistical methodologies. The user lives the experience of a driver in an immersive and interactive Augmented Reality session, interacting with the train dashboard and all its control and signalling devices. In particular, the user is proposed to test different dashboards, different configurations of the controls and different signalling and safety devices in order to compare different concept and select the optimum in terms of perception of dangerous situation, reaction to an event and cognitive response in different situations of the rail vehicle driving. The simulator consists of a simulacrum integrating different technologies, physically composed of a dashboard of the cockpit of a metropolitan train and a real seat. The geometry of the dashboard has been acquired through Reverse Engineering techniques from a real train dashboard. The user’s immersion in the virtual environment during the simulation is guaranteed by the scene displayed on the Augmented Reality device, while, simultaneously, the stereoscopic projection on a screen above the dashboard makes available the experience even to users not directly involved, seeing the scene from the driver’s point of view. The immersive Augmented Reality is realized through a Head-Mounted Display (HMD) by which the user, protagonist of the driving experience, sees the configuration of the virtual control devices (CAD geometries) overlapped with the physical dashboard in order to naturally interact into the immersive environment. The interaction between user and simulator happens through the NUI (Natural User Interfaces) based on markerless tracking of parts of the user’s body.
Keywords: Augmented reality | Head-mounted display | IDEAinVR | Natural user interfaces | Preventive safety | Railway design | Reverse engineering | Train dashboard | Vehicle driving | Vitual simulator
Abstract: The use of Augmented Reality (AR) technologies is the new challenge of management models born under the “Industry 4.0” paradigm. The aim of the work is to evaluate the usability of two types of AR devices (tablet and see-through) employed in the training and information activities of workers according to the ISO/IEC 9126 and ISO 9241 standards. Starting from the state of the art, evaluating market and competitors and developing different concepts of interfaces, a dedicated application was programmed and, then, the usability of such devices for the professional figures involved was evaluated through experimental tests. Two reference scenarios were defined, the Department of Industrial Engineering of University of Naples Federico II and INAIL (National Institute for Insurance against Accidents at Work) laboratories, an user interface was designed and developed, as an aid in the drafting of the document for risk evaluation and subsequent training of workers. The activity is part of the IDEE Project (Interactive Design for Ergonomics), born by the collaboration between Joint Lab IDEAS and Contarp-INAIL-Regional Management for Campania. The data analysis allowed to evaluate the goodness of the devices and the degree of satisfaction in their use on the basis of the sample of users who conducted the tests. The use of AR devices produces better results than paperwork in terms of efficiency and effectiveness, but not all devices produce appreciable results in terms of user satisfaction. Although AR technologies are mature, the tasks need to be carefully defined to avoid rejection phenomena. The strong expectation, that they generate in potential users, risks to remain disappointed today for some usability limits found in currently available devices. It is necessary to start testing in pilot applications in various industrial fields in order to capture in time and adequately support this opportunity of innovation in Italy.
Keywords: Augmented reality | Risk assessment | Usability
Abstract: Objectives To investigate the influence of specific resin-composite, glass ceramic and glass ionomer cement (GIC) material combinations in a “multi-layer” technique to replace enamel and dentin in class II mesio-occlusal-distal (MOD) dental restorations using 3D-Finite Element Analysis (FEA). Methods Four 3D-FE models (A–D) of teeth, adhesively restored with different filling materials, were created and analyzed in comparison with a 3D model (E) of a sound lower molar. Models A, B & C had “multilayer” constructions, consisting of three layers: adhesive, dentin replacement and enamel replacement. Model A: had a low modulus (8 GPa) composite replacing dentin and a higher modulus (12 GPa) composite replacing enamel. Model B: had a GI cement replacing dentin and a higher modulus (12 GPa) composite replacing enamel. Model C: had a low modulus (8 GPa) composite replacing dentin and a very high modulus (70 GPa) inlay replacing enamel. Model D: had a lithium disilicate inlay replacing both dentin and enamel with a luting cement base-layer. Polymerization shrinkage effects were simulated and a load of 600 N was applied. All the materials were assumed to behave elastically throughout the entire deformation. Results Model A showed the highest stress distribution along all the adhesive interfaces of the shrinking resin-based materials with a critical condition and failure risk marginally and internally. Model D, by contrast, showed a more favorable performance than either of the multilayer groups (A–C). Stress and displacement plots showed an elastic response similar to that obtained for the sound tooth model. Model B and Model C performed according to their bilayer material properties. The use of a non-shrink dentin component simulating a GIC clearly affected the shrinkage stress at the basis of the Model B; while the bulk resin composite having a 12 GPa Young's modulus and linear polymerization shrinkage of 1% strongly influenced the biomechanical response in the bucco-lingual direction. Significance Direct resin-based composite materials applied in multilayer techniques to large class II cavities, with or without shrinking dentin layers, produced adverse FEA stress distributions and displacements. An indirect lithium disilicate inlay used to replace lost dentin and enamel in posterior restored teeth generated lower stress levels, within the limits of the elastic FEA model.
Keywords: CAD | Class II restorations | Finite element analysis | Image analysis | Materials properties
Abstract: Objective To assess the effect of a ferrule design with specific post material-shape combinations on the mechanical behavior of post-restored canine teeth. Methods Micro-CT scan images of an intact canine were used to create a 3-D tessellated CAD model, from which the shapes of dentin, pulp and enamel were obtained and geometric models of post-endodontically restored teeth were created. Two types of 15 mm post were evaluated: a quartz fiber post with conical–tapered shape, and a carbon (C) fiber post with conical–cylindrical shape. The abutment was created around the coronal portion of the posts and 0.1 mm cement was added between prepared crown and abutment. Cement was also added between the post and root canal and a 0.25 mm periodontal ligament was modeled around the root. Four models were analysed by Finite Element (FE) Analysis: with/without a ferrule for both types of post material and shape. A load of 50 N was applied at 45° to the longitudinal axis of the tooth, acting on the palatal surface of the crown. The maximum normal stress criterion was adopted as a measure of potential damage. Results Models without a ferrule showed greater stresses (16.3 MPa) than those for models with a ferrule (9.2 MPa). With a ferrule, stress was uniformly distributed along the abutment and the root, with no critical stress concentration. In all models, the highest stresses were in the palatal wall of the root. Models with the C-fiber post had higher stress than models with the quartz fiber posts. The most uniform stress distribution was with the combination of ferrule and quartz fiber post. Significance The FE analysis confirmed a beneficial ferrule effect with the combination of ferrule and quartz fiber post, with tapered shape, affording no critical stress concentrations within the restored system.
Keywords: CAD | Dental materials | Endodontic treatment | Finite element analysis | Image analysis | Materials properties
Abstract: Simulation results are not representative of a real system behavior up to its model validation. Validation activity needs a model characterization to match real system and model parameters. This activity impacts more on mechatronics systems which are affected by both physical and control characterizations. This work deals with single bowden power window systems; it improves a system model, previously developed, by deepening window aspects and force system. Force types and modules have been obtained by several experimental tests, in different operating conditions. Experimental automated tests have been carried out by means of a new virtual instrument developed in LabVIEW® environment. Comparison of test results highlights three main components related to: sliding friction, window friction and gravity. These components are affected by window shape which induces module variations. We named these variations 'window shape effect and these results bring to a new procedure for system validation.
Keywords: experimental test | mechatronic system | single bowden power window system | system model validation | validation
Abstract: Design team belonging to powertrain divisions can speed up the process of managing information, within gearbox design activities, by adopting digital pattern tools. These tools, belonging to a knowledge-based engineering (KBE) system, can assist engineers in re-using company knowledge in order to improve time-consuming tasks as retrieval and selection of previous architectures and to modify and virtually test a new gearbox design. A critical point in the development of a KBE system is the usability of user’s interface to demonstrate effective reduction of development time and satisfaction in its use. In this paper, the authors face the problem of usability improvement of the graphical user interface (GUI) of the tool belonging to the KBE system and previously proposed. An approach based on analytic hierarchy process and multiple-criteria decision analysis is used. A participatory test is performed for evaluating the usability index of the GUI. Taking into account the data analysis, some changes are carried out and a new GUI release is validated through new experimentations.
Keywords: Gearbox design | Graphical user interface | Participatory design | Usability assessment
Abstract: Objectives To study the influence of resin based and lithium disilicate materials on the stress and strain distributions in adhesive class II mesio-occlusal-distal (MOD) restorations using numerical finite element analysis (FEA). To investigate the materials combinations in the restored teeth during mastication and their ability to relieve stresses. Methods One 3D model of a sound lower molar and three 3D class II MOD cavity models with 95° cavity-margin-angle shapes were modelled. Different material combinations were simulated: model A, with a 10 μm thick resin bonding layer and a resin composite bulk filling material; model B, with a 70 μm resin cement with an indirect CAD-CAM resin composite inlay; model C, with a 70 μm thick resin cement with an indirect lithium disilicate machinable inlay. To simulate polymerization shrinkage effects in the adhesive layers and bulk fill composite, the thermal expansion approach was used. Shell elements were employed for representing the adhesive layers. 3D solid CTETRA elements with four grid points were employed for modelling the food bolus and tooth. Slide-type contact elements were used between the tooth surface and food. A vertical occlusal load of 600 N was applied, and nodal displacements on the bottom cutting surfaces were constrained in all directions. All the materials were assumed to be isotropic and elastic and a static linear analysis was performed. Results Displacements were different in models A, B and C. Polymerization shrinkage hardly affected model A and mastication only partially affected mechanical behavior. Shrinkage stress peaks were mainly located marginally along the enamel-restoration interface at occlusal and mesio-distal sites. However, at the internal dentinal walls, stress distributions were critical with the highest maximum stresses concentrated in the proximal boxes. In models B and C, shrinkage stress was only produced by the 70 μm thick resin layer, but the magnitudes depended on the Young's modulus (E) of the inlay materials. Model B mastication behavior (with E = 20 GPa) was similar to the sound tooth stress relief pattern. Model B internally showed differences from the sound tooth model but reduced maximum stresses than model A and partially than model C. Model C (with E = 70 GPa) behaved similarly to model B with well redistributed stresses at the occlusal margins and the lateral sides with higher stress concentrations in the proximal boxes. Models B and C showed a more favorable performance than model A with elastic biomechanics similar to the sound tooth model. Significance Bulk filling resin composite with 1% linear polymerization shrinkage negatively affected the mechanical behavior of class II MOD restored teeth. Class II MOD direct resin composite showed greater potential for damage because of higher internal and marginal stress evolution during resin polymerization shrinkage. With a large class II MOD cavity an indirect composite or a lithium disilicate inlay restoration may provide a mechanical response close to that of a sound tooth.
Keywords: CAD | Composite | FEA | Inlay | Lithium Disilicate | Micro-CT | Stress analysis
Abstract: This study aims to develop an innovative approach based on a wearable inertial system, which enables objective evaluations on the of loss of ground contact in race-walking, in order to assist coaching and judging. The architecture of the system, its positioning on the human body and functional requirements were defined through a Kansei Engineering approach by using a significant sample of athletes, coaches and judges within the race-walking environment. The analysis of variance supports decisions concerning the optimal system architecture consisting of an inertial sensor positioned on the centre-of-mass of the subject and a control unit. The selected device was then validated in laboratory conditions by means of an integrated system, including dynamic (680 Hz) and kinematic (340 Hz) devices, which are more accurate than the inertial system (200 Hz). The experiment was carried out at the Fraunhofer JL IDEAS-MISEF at CESMA, Laboratory of Advanced Measures on Ergonomics and Shapes of the University of Naples Federico II where four elite race walkers performed 60 test-runs according to a well-defined experimental protocol. Results proved that the inertial system could improve the accuracy in detecting illegal steps. Through statistical classification, it was found that the proposed approach has achieved encouraging results in comparison with state of the art approaches and could be a good architecture to develop a valuable tool to assist experts.
Keywords: Experimental validation | Inertial sensor | Kansei engineering | Loss of ground contact | Race-walking | Statistical analysis
Abstract: Nowadays digital substitutes of human beings (digital humans), capable of interacting with digital mock-ups in Virtual Reality, are widely used in many fields of engineering (e.g. ergonomics, product design, maintenance, and training). Nevertheless, the animation process of digital humans is still a time-consuming task, and its accuracy and reliability strongly depend on the experience and the skills of the operator. This paper presents an innovative algorithm capable of significantly speeding up the animation process of digital humans, allowing the operator to focus only on the so-called "task-related control points". This approach allows also to easily conduct biomechanical analyses. The algorithm has been tested with reference to several application scenarios in Virtual Reality.
Keywords: Algorithm | Digital humans | Kinematics | Virtual reality
Abstract: Ergonomic design of automotive seat is a very challenging task whose results may directly influence driver’s comfort and safety. Seat comfort can be improved by identifying car-packaging solutions that allow an optimal driver’s posture. In order to reduce the time and cost for testing, ergonomic analysis is carried out in virtual reality (VR) environment with digital human models (DHM) that can be used to simulate the anthropometric variability of a target population of users and thus verify the robustness of design solutions with respect to the anthropometrical noise factor. In this paper we illustrate a case study concerning the comfort improvement of a minicar packaging set up via robust ergonomic design (RED) with digital human models. The aim is the identification of the optimum levels for the seat control parameters that minimize the driver’s comfort loss with respect to a preferred posture. The approach adopted for the analysis of data obtained from the virtual experiments is based on the joint generalized linear modeling of mean and dispersion of the driver’s postural comfort loss (i.e. the ergonomic response of interest).
Keywords: Generalized Linear Models | Postural Comfort Loss | Robust Ergonomic Virtual Design | Seat Comfort Improvement
Abstract: This work explores the use of an industry-oriented digital human modelling tool for the estimation of the musculoskeletal loads corresponding to a simulated human activity. The error in using a static analysis tool for measuring articulations loads under not-static conditions is assessed with reference to an accurate dynamic model and data from real experiments. Results show that, for slow movements, static analysis tools provide good approximation of the actual loads affecting human musculoskeletal system during walking.
Keywords: Biomechanics | Dynamics | Gait analysis | Kinematics | Virtual simulation
Abstract: A statistical approach for the characterization of Additive Manufacturing (AM) processes is presented in this paper. Design of Experiments (DOE) and ANalysis of VAriance (ANOVA), both based on Nested Effects Modeling (NEM) technique, are adopted to assess the effect of different laser exposure strategies on physical and mechanical properties of AlSi10Mg parts produced by Direct Metal Laser Sintering (DMLS). Due to the wide industrial interest in AM technologies in many different fields, it is extremely important to ensure high parts performances and productivity. For this aim, the present paper focuses on the evaluation of tensile properties of specimens built with different laser exposure strategies. Two optimal laser parameters settings, in terms of both process quality (part performances) and productivity (part build rate), are identified.
Keywords: Additive Manufacturing (AM) | ANalysis of VAriance (ANOVA) | Design of Experiments (DOE) | Direct Metal Laser Sintering (DMLS) | Nested Effects Modeling (NEM)
Abstract: Objective To study the influence of the different class II mesio-occlusal-distal (MOD) cavity shape on the stress and strain distributions in adhesive indirect restorations, using numerical finite element analysis (FEA). To investigate the relationship between restored teeth failure and stiffness of food, three values of Young's modulus were used for the food. Methods A 3D model of a sound lower molar and three class II MOD cavities with different shape were created. Slide-type contact elements were used between tooth surface and food. An adhesive resin-based cement, modeled with fixed-type contact elements, and a single restorative filling materials were considered. To simulate polymerization shrinkage effect, which is basically restricted to the thin composite cement layer, shell elements were employed and the thermal expansion approach was used. A vertical occlusal load of 600 N was applied, while assigning fixed zero-displacements on the cutting surfaces below the crevices. All the materials were assumed to be isotropic and elastic. A static linear analysis was carried out. Results In the lingual cusp, the displacements increased as the values of the stiffness food increased. In the restored teeth, the stress near the restoration-tooth interface was strongly dependent on the MOD cavity shape. The stress peaks were mainly located along the enamel–dentin interface at the lingual side; wedge-shaped MOD cavity with a low angle, in combination with the lowest food stiffness provided the best results. Significance A more complex load application on the occlusal surfaces was introduced. Food stiffness slightly affected the stress distribution of the restored and sound teeth. Teeth with adhesive class II MOD indirect resin composite restorations were potentially more susceptible to damage if the class II MOD cavity-margin-angle was higher than 95°. Restored teeth with a higher cavity-margin-angle led to considerable stress concentration in the lingual cusp along the enamel–dentin interface. These models were more susceptible to fracture in the lingual cusps when compared to the buccal ones.
Keywords: CAD | Endodontics | Finite element analysis | Micro-computed tomography | Stress analysis
Abstract: The purpose of this paper is to assess the main effects on the geometric errors in terms of flatness, circularity and cylindricity based on the size of the printed benchmarks and according to the position of the working plane of the 3D printer. Three benchmark models of different sizes, with a parallelepiped and cylinder shape placed in five different positions on the working plane are considered. The sizes of models are chosen from the Renard series R40. Benchmark models are fabricated in ABS (Acrylonitrile Butadiene Styrene) using Zortrax M200 3D printer. A sample of five parts for each geometric category, as defined from the R40 geometric series of numbers, is printed close to each corner of the plate, and in the plate center position. Absolute Digimatic Height Gauge 0-450mm with an accuracy of ±0.03mm by Mitutoyo is used to perform all measurements: flatness on box faces, and circularity/cylindricity on cylinders. Results show that the best performances, in terms of form accuracy, are reached in the area center printable while they decrease with the sample size. Being quality a critical factor for a successful industrial application of the AM processes, the results discussed in this paper can provide the AM community with additional scientific data useful to understand how to improve the quality of parts which may be obtained through new generations of 3D printer.
Keywords: Additive manufacturing | Fused deposition modelling | Geometric errors
Abstract: The present paper deals with methods for product development aimed to support designing activities and to re-use company know-how. The work is addressed to complex products i.e. products characterized by several components and dependencies among them. Then, the paper presents both the methodological approach and the application to the 3D CAD modelling of an automotive car door assembly. The work uses directed graphs and a series of algorithms to provide a Graphical User Interface (GUI) able to support a designer by reducing the development time of new car door assemblies and increasing the accuracy of the design activities. According to a digital pattern approach, the GUI is used to determine the set of changes to 3D CAD models that typically occur in the automotive field, during the development of new car door assemblies.
Keywords: Automotive car door design and development | CAD modelling | Digital pattern for product development | Directed graphs
Abstract: The aim of this paper was to investigate prerequisites for safety equipment in the surrounding area of soccer playing-fields. Therefore, the frequency and location of overstepping boundary line events (OBEs) occurring when football players are crossing the boundary lines and leaving the regular field. Commercial television video footage of 28 matches in UEFA European Championship 2012 and of 46 matches in FIFA World Cup 2006 were analysed. To accurately identify portions of playfield outline where an OBE occurred, the four different field lines, two Goal lines and two Side lines were divided in 46 segments, defined as “boundary-line-segment” (BLS). Statistical analysis was used to prove if OBEs were uniformly distributed over all playfield BLSs. The results indicated remarkable differences in OBE frequencies among football field areas. In particular, goal-line-BLSs have shown to be the most critical zones of the pitch outline, with different number of OBEs on the two goal lines. This opposes the expected symmetry in OBE distribution as a consequence of the usually adopted directions of football playing and equal boundary areas surrounding goal posts. Furthermore, absolute OBE frequencies on Side line near to the technical area appeared to be greater than the homologues on the opposite side line. The distribution pattern of OBEs over all BLS can be explained by two main influencing effects: the side line effect (SLE—players behave differently at the sideline of the technical area compared to opposite side line because of different distance to advertisements boards) and the leg side effect (LSE—most players prefer to use their right leg to kick the ball). Findings in terms of OBE frequencies should be taken into account to establish right priority of actions for safety intervention by responsible and technicians of Sports fields.
Keywords: Boundary lines | Football | Impact | Match analysis | Safety
Abstract: 3D inspection process is getting more and more interest for manufacturing industries as it helps to carefully check the expected quality of the released products. Much more attention is oriented to optical devices able to quickly capture the whole shape of the product providing many useful information on the process variability and the deliverability of the key characteristics linked to the quality of the product/process. Although the optical control of 3D scanners is mature enough, many factors may influence the quality of the scanned data. These factors may be strictly related to internal elements to the acquisition device, such as scanner resolution and accuracy, and external to it, such as proper selection of scanning parameters, ambient lighting and characteristics of the object surface being scanned (e.g. surface colour, glossiness, roughness, shape), as well as the sensor-to-surface relative position. For the 3D laser-based scanners, the most common on the market, it would be of great industrial interest to study some scanning factors mainly affecting the quality of the 3D surface acquisitions and provide users with guidelines in order to correctly set them so to increase the massive usage of these systems in the product inspection activities. In this context, by using a commercial triangulation 3D laser scanner, the effects of some scanning factors that may affect the measurement process were analysed in the present paper. Working on a sheet metal test part, more complex than the ones commonly used in laboratory and documented in the literature, the scanner-to-object relative orientation and the ambient lighting, as well as an internal scanner parameter, were tested. Through a Design of Experiments (DoE) approach, and setting root mean square error (RMSE) as response function, the outcomes of the tests mainly pointed out that the scanner-to-object relative orientation as well as its position within the field of view of the measurement device are the key factors mostly influencing the accuracy of the measurement process.
Keywords: 3D inspection process | 3D laser scanner | Design of Experiments | Surface acquisition
Abstract: The chapter tackles the issue of improving the robustness of mechatronic systems. In particular, the chapter highlights the need to operate at two levels, in order to accomplish both the mechatronic system, conceptual architecture, and the mechatronic parameter design. The chapter gives evidence to the criticalities in operating at the conceptual level and some tools for the evaluation of the variability of system performances. The approach presented in the chapter is then applied to an automotive power windows system. The recognition of the most significant design parameters within the mechatronic system and the understanding of their variations allow the conscious identification of system configuration that assures the minimal variation of system response under the effects of noise factors.
Abstract: Polymer-based composites are ideal for applications where high strength-to-weight and stiffness-to-weight ratios are required. In the biomedical field, fiber-reinforced polymers have replaced metals, emerging as suitable alternative. Reverse engineering and additive manufacturing methods are required to achieve the design of customized devices with specific shape and size. At the same time, micro-mechanics and macro-mechanics play an important role in the development of highly functional composite materials. The aim of this research is to develop customized 3D models of a human mandible using reverse engineering, additive manufacturing and composite material technology. Experiments were carried out by loading the models through the condyles and the results show the potential to reproduce the mechanical behavior of a human mandible. Taking into account the curves of the load-arch width decrease, the stiffness of the 3D composite model was 14.1± 1.9 N/mm, which is close to the tested human mandible (17.5 ± 1.8 N/mm).
Keywords: Experimental Testing | Fiber-reinforced composites | Mandible | Reverse Engineering | Stereolithography
Abstract: The risk of injury following a player's impact with objects in sport facilities is a growing problem, as shown by serious accidents that happen when players have head impacts with obstacles and barriers installed around the play area. At present, no experimental data are available about the kinematics of football (soccer) players during a running-out of playing areas scenario. Experimental tests on a sample of 14 skilled football players, aged between 17 and 19 years, were conducted to investigate athletic performances in common gaming actions of running, considered potentially-damaging when they occur near the boundary lines of the regular pitch. In the current research, a player's motion was captured with a high-frequency camera and kinematic data were video-analysed. The experimental trials resulted in kinematic data plots, characterised by a decelerating trend of the speed versus the distance covered by the players during the required movements. A section at the starting point and three sections at consecutive distances (a total amount of four sections in correspondence of 0 m and consecutive 1.5 m, 2.5 m, 3.5 m on the lane covered by players) of the decelerating trends of data were analysed. Findings of this pilot study should be useful for the improvements of passive safety in sports fields, allowing the correlation of the potential impact energy of players with the installation distances of protective devices.
Keywords: Association Football | Kinematics | Passive Safety | Running-out | Sports Equipment and Facilities | Video-Analysis
Abstract: Aim of this study was to validate an inertial system able to detect the loss of ground contact (LOGC) in race-walking through outdoor tests in real training conditions. An inertial sensor was placed at L5/S1 of the vertebral column of a Italian national team athlete to acquire timing measurements of the LOGC. Data were encoded by a well-defined protocol. After a preliminary laboratory study, the athlete performed outdoor-field-tests at different velocities. A specific e-bike with a high-speed camera allowed to acquire a video and to validate sensor measurements. Results indicate that the inertial system can improve the accuracy in detecting the visible LOGC.
Keywords: inertial sensor | loss of contact | outdoor test | Race walking | video analysis
Abstract: This paper describes a new motion analysis protocol for race-walking. The protocol has been tested under laboratory conditions on a real athlete of the Italian national race-walking team. The experimental setup included a motion capture system and a force platform to record both kinematic and dynamic aspects of the athletic action. Thus, any infringement of the rules can be detected, based on the measure of knee flexion-extension and the loss of ground contact. The biomechanical efficiency can be determined from the joint angles and the temporal components of gait. The results of experiments show that the protocol can be a valuable tool to assist athletes and trainers in improving race-walking technique.
Keywords: Biomechanics | Dynamics | Experimental protocol | Gait Analysis | Kinematics | Motion Capturing | Race-walking
Abstract: Nowadays photogrammetric techniques have known important developments and are widely employed for 3D acquisitions in different fields of application. The paper analyzes the effects of different parameters (texturization, ambient light and water turbidity) on the quality of the 3D reconstruction in underwater photogrammetry. Several experimental tests were performed on a wind turbine blade using a common action camera, the GoPro 4 black edition and a commercial software, Photoscan by ©Agisoft. By means of a DoE (Design of Experiments) approach, 3D models were reconstructed varying the chosen parameters. Each of them was compared with a CAD model, used as reference, obtained by more accurate laser scans VI-9i by Konica Minolta. The results showed that blade texturization, ambient light and water turbidity significantly impact on the quality of the 3D reconstruction. Optimal results were obtained with textured blade, morning ambient light (exposure 1/60, f/2.8 and ISO sensitivity 100) and clear water. Moreover, in order to calculate confidence intervals for regression coefficients, even with few acquisitions, a computer-intensive bootstrap procedure was applied to the regression model. Finally, further confirmation experiments carried out in a deeper swimming pool and with poor conditions (e.g., very low ambient light and no blade texturization) in order to reproduce the real submarine environment. In such situations, an additional source of light and one or more grids, which allow a pattern to be created on the edges of the wind turbine blade, may help reconstructions.
Keywords: Bootstrapping | Design of experiments | Passive no-contact techniques | Reverse engineering | Structure from motion | Underwater photogrammetry
Abstract: The paper tackles an integrated use of object-oriented modelling (OOM) and design of experiments (DoE) to determine the performance of a double bowden power window system in order to accomplish the expected system performances during the preliminary designing phase and, therefore, by accelerating the product development process. A DoE has been carried out by using the power window model, developed in Dymola environment. The response surface method (RSM) and ANOVA analysis are used to identify the significant factors. Then, an empirical equation is derived. It predicts the main system response i.e. the stroke time, expressed as dependency related to the significant factors. Finally, the use of the empirical relation inside a design flow of a power window, based on digital patterns, is presented.
Keywords: Design of experiments | Digital pattern for product development | Mechatronic systems | Object-oriented modeling | Power window systems
Abstract: The paper deals with automotive power window systems and, in particular, tackles the problem of validating the object-oriented model of a single bowden system, to be used within a Model-Based System Engineering (MBSE) approach. Therefore, the paper tackles the problem of increasing accuracy of object-oriented models by defining model refinements i.e. by identifying objects whose modelling has to be improved. Firstly, the role of object-oriented modelling and the main characteristics of the power window system are summarized. Then, the object-oriented model of an automotive single bowden power window system is presented. Finally, the experimental phase, performed to characterize the behavior of the real system is summarised and the validation of simulation model, as well as the identification of model refinement, are accomplished.
Keywords: mechatronic systems | model validation | object-oriented modeling | single bowden power window system
Abstract: The paper deals with the relationship between geometrical or topological entities of complex systems and the physics in which the systems are involved. In particular, the paper deepens the integration of thermal physics with geometrical constraints. Therefore, the results of the work could be used within the development of a 3D-multiphysical sketcher viz., a tool for the preliminary design of complex systems, characterized by the presence of one or more overlapping physics. Firstly, the model of Topologically & Technologically Related Surfaces (TTRS) is used and related Minimal Reference Geometrical Elements (MRGEs) and constraint conditions are implemented by means of Modelica language. Then, the implementation of new objects for MRGEs and constraint conditions are applied to a mechanical assembly. Finally, the integration of TTRS model within thermal physics is applied to the case of the layout designing for electronic boards.
Keywords: Modelica language | Multiphysics | preliminary design | TTRS
Abstract: Divertor is a crucial component in Tokamaks, aiming to exhaust the heat power and particles fluxes coming from the plasma during discharges. This paper focuses on the optimization process of FAST divertor, aimed at achieving required thermo-mechanical capabilities and the remote handling (RH) compatibility. Divertor RH system final layout has been chosen between different concept solutions proposed and analyzed within the principles of Theory of Inventive Problem Solving (TRIZ). The design was aided by kinematic simulations performed using Digital Mock-Up capabilities of Catia software. Considerable electromagnetic (EM) analysis efforts and top-down CAD approach enabled the design of a final and consistent concept, starting from a very first dimensioning for EM loads. In the final version here presented, the divertor cassette supports a set of tungsten (W) actively cooled tiles which compose the inner and outer vertical targets, facing the plasma and exhausting the main part of heat flux. W-tiles are assembled together considering a minimum gap tolerance (0.1-0.5 mm) to be mandatorily respected. Cooling channels have been re-dimensioned to optimize the geometry and the layout of coolant volume inside the cassette has been modified as well to enhance the general efficiency.
Keywords: Digital Mock-Up | Divertor | FAST | Finite element EM and mechanical analyses | Remote handling
Abstract: In the field of additive manufacturing (AM) processes, there is a significant lack of scientific data on the performance of open-source 3D printers in relation to process parameter values. The purpose of this paper is to assess the impact of the main process parameters on the accuracy of a set of typical geometric features, as obtained with an open-source 3D printer, the RepRap Prusa-Mendel I2. For this purpose, a benchmarking part was set up, composed of elementary shapes, representing a series of different geometric features. By means of a DoE approach, it was possible to assess the effects of two process parameters - layer thickness (Lt) and flow rate (Fr) - on five geometric features: cube, sphere, cylinder, cone, and angled surface. A high resolution Laser Scanner was used to evaluate the variation between the acquired geometric feature and the corresponding 3D computer-aided design (CAD) nominal model. On the basis of experimental results, it was possible to analyze and discuss the main effects of the above-mentioned process parameters on each geometric feature. These results can help RepRap users in the correct selection of process parameters with the aim of improving the quality of prototypes.
Keywords: geometric features | laser scanner | open-source 3D Printers | process parameters
Abstract: Purpose - This study aims to quantify the ultimate tensile strength and the nominal strain at break (f) of printed parts made from polylactic acid (PLA) with a Replicating Rapid prototyper (Rep-Rap) 3D printer, by varying three important process parameters: layer thickness, infill orientation and the number of shell perimeters. Little information is currently available about mechanical properties of parts printed using open-source, low-cost 3D printers. Design/methodology/approach - A computer-aided design model of a tensile test specimen was created, conforming to the ASTM:D638. Experiments were designed, based on a central composite design. A set of 60 specimens, obtained from combinations of selected paramers, was printed on a Rep-Rap Prusa I3 in PLA. Testing was performed using a JJ Instruments - T5002-type tensile testing machine and the load was measured using a load cell of 1,100 N. Findings - This study investigated the main impact of each process parameter on mechanical properties and the effects of interactions. The use of a response surface methodology allowed the proposition of an empirical model which connects process parameters and mechanical properties. Even though results showed a high variability, additional ideas on how to understand the impact of process parameters are suggested in this paper. Originality/value - On the basis of experimental results, it is possible to obtain practical suggestions to set common process parameters in relation to mechanical properties. Experiments discussed in the present paper provide a variety of data and insight regarding the relationship among the main process parameters and the stiffness and strength of fused deposition modeling-printed parts made from PLA. In particular, this paper underlines the shortage in existing literature concerning the impact of process parameters on the elastic modulus and the strain to failure for the PLA. The experimental data produced show a good degree of compliance with analytical formulations and other data found in literature.
Keywords: Central composite design | Nominal strain at break | Open-source 3D printers | Polylactic acid | Process improvement | Ultimate tensile strength
Abstract: Aim of this paper is to describe a research activity on the virtual prototyping, by means of the Reverse Engineering techniques, of an automotive semi-active,differential based on the use of a Magneto-Rheological Fluid. The MRF allows to control the locking torque and consequently to improve the vehicle handling. Starting from the 3D digitizing and the virtual reconstruction of a gearbox of a common front wheel drive vehicle, the boundary volume of the new device (MRF LSD) was defined and a preliminary CAD model was realized. Then, optimizing its dimensions and choosing the adequate materials, the final virtual prototype was obtained. The successive GD&T phase allowed to get the best assembly procedure and quality of the final model of the new device. In order to evaluate the goodness of the virtual simulations realized and of the results proposed, a physical prototype was manufactured. Finally, several experimental tests were carried out to validate the design process.
Keywords: 3D CAD parametric | Automotive differential | Magneto-rheological fluid | Reverse engineering | Virtual prototyping techniques
Abstract: The present paper proposes a structured Product Development Lifecycle (PDL) model to deal with the concept design stage of complex assemblies. The proposed method provides a systematic approach to design, aimed to improve requirements management, project management and communication among stakeholders as well as to avoid project failures reducing project development time. This research also provides suggestions and recommendations for utilizing different analysis, synthesis and assessment methodologies along with the proposed approach. The process developed, named Iterative and Participative Axiomatic Design Process (IPADeP), is consistent with ISO/IEC 15288:2008 – “Systems and software engineering”, and INCOSE Systems engineering handbook. It is an iterative and incremental design process, participative and requirements driven, based on the theory of Axiomatic Product Development Lifecycle (APDL). IPADeP provides a systematic methodology in which, starting from a set of experts’ assumptions, a number of conceptual solutions are generated, analysed and evaluated. Based on the results obtained, new iterations can be performed for each level of decomposition while product requirements are refined. In this paper, we applied IPADeP to the initial phase of conceptual design activities for DEMO divertor-to-vacuum vessel locking system in order to propose new innovative solutions.
Keywords: Axiomatic Design | Concept design | DEMO divertor locking system | Fuzzy-AHP | Systems engineering
Abstract: With a view to enabling additive manufacturing (AM) processes, today, open-source, low-cost 3D printers are systems with great potential. However there is a significant lack of scientific data on the performance of open-source 3D systems and on the selection of adequate process parameters that can help to improve the quality of the parts. The purpose of this paper is to assess the effects of the main process parameters on the dimensional accuracy of a specific open-source 3D printer, the RepRap Prusa-Mendel I2. This study consisted of a benchmarking part, involving elementary shapes representing a series of different features. By means of a full factorial DoE (Design of Experiments), with three factors (layer thickness, deposition speed, and flow rate), three levels, and three replications, 81 parts were obtained. Subsequently, a laser scanner (D700 Laser Scanner-3Shape, Denmark) was used as high resolution reverse engineering system in order to evaluate the variation between real parts and nominal geometry. The impact of the main process parameters was evaluated and optimal combinations were analyzed. On the basis of the results obtained in the experiments, practical suggestions for the settings of common process parameters were formulated. Test results serve to improve the quality of AM parts through the most appropriate selection of the main process parameters.
Abstract: This paper deals with an application of Discrete Event Simulation (DES) within the manufacturing process of a high-speed train. Today, the use of a DES tool is common for supporting engineers in designing the production lines and planning the production, representing a valid help in what-if analyses and in the measurement or validation of a solution. In this research activity, differently from the common use, it has been developed a DES model whose function is not to measure and/or validate a solution of a problem, but to generate a solution that will be nearly to the optimum. This paper describes DES tools, the methodology used in this work, the model built, the case-study and the obtained results.
Keywords: Discrete event simulation | Production planning | Scheduling optimization | Virtual manufacturing
Abstract: This paper deals with the development of a Knowledge Based Engineering (KBE) methodology for supporting a manufacturing company, in particular railway manufacturers, in their analyses for reusing existing products in new projects. The proposed methodology is based on the development of a Decision Support System (DSS) and the use of an analysis, called Adopt/Adapt/Innovate (AAI), aimed at identifying products already designed that fully or partly fit what required by new bids. The DSS is built within a PLM software and part of the research concentrated on comparing the PLM suites available in the market searching for the best tool able to act the role of a centralized management dashboard for knowledge reuse. DSS and AAI analysis are the base for future research activities for obtaining a KBE system that automatically models complex railway products starting from the customer requirements, drastically reducing the time to market.
Abstract: The main objective of this work was to design an innovative skidding winch aimed to improve timber harvesting productivity, operators' safety, and reduce environmental damage in contexts in which mechanized harvesting is limited. The study area is the north-western Black Sea region of Turkey. In the proposed methodology, the harvesting process was simulated with Discrete Event Simulation (DES) software in order to identify bottlenecks. An alternative process was compared with the original one within the DES software itself in order to validate further steps oriented to generate new innovative product concepts. The development of the product was focused towards customer satisfaction, collecting customer requirements and identifying quality characteristics with a Quality Function Deployment approach. Contradictions identified in the design phase were solved using the TRIZ contradiction toolkit, generating different product concepts. Inventive solutions provided by TRIZ were designed within parametric CAD software. The concepts were compared in virtual environment with focus on ergonomics, selecting an optimal solution. The results show that with the concept adopted is possible to achieve a substantial increase in productivity, from 121% to 133%, in terms of kilograms of logs per hour deposited on the landing. Moreover, the final concept allows for ergonomic loading operations and reduces environmental damage to soil and vegetation.
Abstract: The paper deals with a digital pattern (DP) approach to the design of an automotive power window, using object-oriented modelling. Therefore, the paper faces the designing of a mechatronic system by using an integrated approach to product development. Then, Dymola/Modelica environment is used as a tool of a decision support system that makes possible the DP approach. The paper briefly sum up the results of simulations related to a power window system characterized by a double bowden sliding mechanism. Finally, the paper highlights the parameters that could be easily integrated in a graphical user interface, aimed to reduce both the development time of new power window system and to increase the accuracy of design activities.
Keywords: Digital pattern for product development | Mechatronic systems | Objectoriented modeling | Power window systems
Abstract: The Iterative and Participative Axiomatic Design Process (IPADeP) deals with the early conceptual design stage of complex mechanical assemblies. It provides a systematic approach based on the theory of Axiomatic Product Development Lifecycle and aims to minimize the risks related to the uncertainty and incompleteness of the requirements, considering that the requirements will be refined and completed during the process. IPADeP has an iterative nature and is focused on the experience of the people involved in the design process. The functional requirements and the design parameters are conceived through brainstorming sessions and the concept selection is performed involving several experts through a Multi Criteria Decision Making technique. IPADeP has been adopted as methodology to address the early conceptual design stage of a subsystem of the DEMOnstration fusion power plant: the divertor cassette-to-vacuum vessel locking system. A first iteration was performed, resulting in the selection of a "high level" rough solution. According with IPADeP this paper presents an improvement of this solution, performing a new iteration of the process, since the system is ripe to proceed with the decomposition and zigzagging to the second level and new requirements are coming in from the development of the interfaced systems.
Keywords: Axiomatic Design | Conceptual Design | fusion engineering | IPADeP
Abstract: This paper deals with pre-concept studies of DEMO divertor cassette-to-vacuum vessel locking system under the work program WP13-DAS-07-T06: Divertor Remote Maintenance System pre-concept study. An iterative design process, consistent with Systems Engineering guidelines and named Iterative and Participative Axiomatic Design Process (IPADeP), is used in this paper to propose new innovative solutions for divertor locking system, which can overcome the difficulties in applying the ITER principles to DEMO. The solutions conceived have been analysed from the structural point of view using the software Ansys and, eventually, evaluated using the methodology known as Fuzzy-Analytic Hierarchy Process. Due to the lack and the uncertainty of the requirements in this early conceptual design stage, the aim is to cover a first iteration of an iterative and incremental process to propose an innovative design concept to be developed in more details as the information will be completed.
Keywords: Concept design | DEMO divertor locking system | FEM analysis | Fuzzy-AHP | Remote maintenance | System engineering
Abstract: In contexts in which mechanized harvesting is limited, such as in the northwestern Black Sea region of Turkey, it is important to improve timber harvesting productivity while preserving operators’ safety and reducing environmental damage. This study aims to introduce a methodology in which the harvesting process is simulated with discrete-event simulation (DES) software in order to identify bottlenecks. An alternative process is compared to the original within the DES software, carrying out further steps oriented to the generation of new innovative product concepts. As a case study, the design of an innovative skidding winch is proposed. The development of the product was focused towards customer satisfaction by collecting customer requirements and identifying quality characteristics with a quality function deployment approach. Contradictions identified in the design phase were solved using the TRIZ contradiction toolkit, generating different product concepts. Inventive solutions provided by TRIZ were designed within parametric CAD software. The concepts were compared in a virtual environment, eventually selecting an optimal solution. The results showed that, with the concept adopted, it is possible to achieve a substantial increase in productivity, from 121% to 133%, in terms of kilograms of logs per hour deposited on the landing.
Keywords: Discrete-event simulation | Forest harvesting | Quality function deployment | TRIZ
Abstract: The paper deals with the design issues concerning the remote maintenance of divertors in fusion advanced studies torus (FAST), a satellite tokamak acting as a test bed for the study and the develop of innovative technologies oriented to ITER and DEMO programs, pilot examples of the feasibility of energy production from nuclear fusion on the Earth. FAST remote handling (RH) solutions are provided according to an "interactive design review" philosophy based on virtual prototyping techniques. Assuming an ITER configuration as start point, it foresees an iterative process of design review, carried out in virtual reality (VR) environment and oriented to obtain a sort of best solution from the RH point of view. Any iteration includes the analysis of the current solution and the proposal of new and alternative ones, based on the requirements fulfillment and the improvement of critical points highlighted. In such a way, and this is the main novelty introduced by the paper, the interactive design review in a VR collaborative environment becomes the tool able to put in cooperation and in positive competition various and different competences, required by a multidisciplinary problem as the realization of nuclear fusion machine, in order to reach a shared solution. A first preliminary FAST RH solution is hereinafter presented, accompanied by the design of a compatible support system, due to the strict relationship between the divertor maintenance and the support configuration. The work was carried out via the collaboration of the "Divertor Test Platform 2" (DTP2) team, in charge of ITER divertor RH tests and located in VTT's Labs of Tampere (Finland), and the IDEAinVR team of CREATE Consortium, with competence in interactive design and VR simulations and located in the Virtual Reality Lab of University of Naples Federico II (Italy). © 2013 Springer-Verlag France.
Keywords: Fusion engineering | Interactive design | Remote handling | Tokamak design | Virtual prototyping
Abstract: The object of this paper is the development of a decision support system involved in the bidding for invitations to tender in the railway field. The proposed methodology is based on the characterization of the whole train and its components, through several attributes according to a digital pattern approach. In particular some key components were chosen such as the traction motor, the bogie and the auxiliary equipment converter. The system measures the extent to which the products offered by the company fit the one required by the customer, comparing the homologous attributes. Such analysis is called 'adopt/adapt/innovate' (AAI). In this way it is possible to identify products already designed that fully or partly fit what required, obtaining huge benefits in terms of effectiveness and efficiency.
Keywords: Bid | Decision support system | Digital pattern | Digital portfolio | Virtual prototyping
Abstract: This paper describes a research activity concerning the design and the development of an automotive semi-active differential based on the use of a magnetorheological fluid that allows to control the locking torque and, consequently, to improve the vehicle handling. Starting from a gearbox of a common front wheel drive vehicle, the boundary volume of the new device was defined by means of reverse engineering techniques. Two alternative architectures were proposed and compared to select the best one in terms of functionality. Then, the selected functional scheme was modeled and optimized by means of multiphysics simulations. The definition of a reiterative process, based on the use of a specific cost function, allowed to optimize the design variables and to obtain the final virtual prototype. In order to evaluate the effectiveness of the proposed device, a physical prototype was realized. First experimental tests were carried out validating the design process. © 2014 Elsevier Ltd. All rights reserved.
Keywords: Automotive differential | Mechatronic device | Optimal design | Reverse engineering | Virtual prototyping techniques
Abstract: The aim of this paper is to investigate an iterative statistical procedure, based on a small and censored sample of impact test experiments, useful for interval estimation of head impact safety parameter as critical fall height of protective devices. An adaptive testing routine was developed that was mainly constituted by a series of at least four impact test experiments, followed by the comparison of at least two parameter estimates based on incremental exponential regression fittings and a final confirmation experiment. A total number of 23 protective devices, mainly made of polyethylene foam, were investigated in order to validate the adaptive routine. The routine, applied to critical fall height of protective devices, was 19 times convergent within a maximum of 6 impact test experiments. 4 times the sample was censored because the iterative procedure has exceeded the available number of specimens. Confidence intervals at the 90 % level were always less than 0.18 m. The applicability of the adaptive routine was satisfactory demonstrated with reference to devices made of PE-foam and safety threshold of peak acceleration a-max equal to 200 g. The target of a confidence interval below the state-of-art was achieved. © 2014 Elsevier Ltd.
Keywords: ASTM F 1292 | Critical fall height | Impact attenuation | Sports safety
Abstract: This paper deals with the development of a knowledge-based engineering (KBE) approach able to support railway manufacturers in their assessments on the convenience of participating in competitive tendering and, subsequently, in the offer definition and in the designing phase. The proposed approach is based on a Decision Support System (DSS) that allows an analysis, called Adopt-Adapt-Innovate (AAI), to be made, which helps the company in the search of its products that best suit the requirements of new bids. Digital pattern techniques, configuration design methods and parametric modeling are the tools proposed to optimize the process that starts with the tender notice, passes through the offer definition and ends with the design. The paper describes the railway market logics, the proposed methodology and the first obtained results. © 2014 WIT Press.
Keywords: Decision support system | Digital pattern | Knowledge-based engineering | Parametric modeling
Abstract: The development of an automotive semi-active differential is described. The device is based on the use of a magnetorheological fluid and allows to control the locking torque and, consequently, to improve the vehicle handling. In order to evaluate the effectiveness of the proposed device, a physical prototype was realized and the first experimental tests were carried out.
Keywords: Automotive differential | Magnetorheological fluid | Vehicle dynamics
Abstract: The present paper proposes a novel general approach to automatically calculate the variational parameters for planar or cylindrical features for a given set of tolerance specifications, according to ANSI or ISO Standards. Variational parameters correspond to those directions along/around which variation, in terms of small translation and rotation, may propagate for a given feature with tolerance specifications. A graph representation of these tolerance specifications is adopted and it is used along with screw theory and Davies's laws to automatically calculate the variational parameters, and then the net variational space of each toleranced feature, by capturing nominal geometries directly from a CAD environment (SolidWorks). From screw theory, twist matrices, able to capture the motion properties of any kinematic joint in mechanical assemblies, are here adopted at part level and collected for every feature-to-datum relationship. Davies's laws are then recalled to put those matrices together to calculate the variational parameters. In this way, both single-datum and multi-datum tolerance specifications can be handled. The proposed approach for the automatic calculation of variational parameters could be successfully implemented in a more general expert system for designing mechanical assemblies where an added-value interaction could allow user to detect relationships between geometric features. In this way, the leading of activities aimed to tolerance analysis could be accomplished both during the preliminary design stages and throughout the manufacturing and reviewing sessions. © 2012 Springer-Verlag France.
Keywords: CAD automation | Graph representation | Mechanical networks | Screw theory | Tolerance analysis | Variational parameters
Abstract: The paper focuses on the application of the Theory of Inventive Problem Solving (TRIZ) to divertor Remote Handling (RH) issues in Fusion Advanced Studies Torus (FAST), a satellite tokamak acting as a test bed for the study and the development of innovative technologies oriented to ITER and DEMO programs. The objective of this study consists in generating concepts or solutions able to overcome design and technical weak points in the current maintenance procedure. Two different concepts are designed with the help of a parametric CAD software, CATIA V5, using a top-down modeling approach; kinematic simulations of the remote handling system are performed using Digital Mock-Up (DMU) capabilities of the software. The evaluation of the concepts is carried out involving a group of experts in a participative design approach using virtual reality, classifying the concepts with the help of the Analytical Hierarchy Process (AHP). © 2013 Elsevier B.V.
Keywords: AHP | Concept design | FAST tokamak | Interactive design | Remote handling | TRIZ
Abstract: The paper presents a concept design of a remote handling (RH) system oriented to maintenance operations on the divertor second cassette in FAST, a satellite of ITER tokamak. Starting from ITER configuration, a suitably scaled system, composed by a cassette multifunctional mover (CMM) connected to a second cassette end-effector (SCEE), can represent a very efficient solution for FAST machine. The presence of a further system able to open the divertor port, used for RH aims, and remove the first cassette, already aligned with the radial direction of the port, is presumed. Although an ITER-like system maintains essentially shape and proportions of its reference configuration, an appropriate arrangement with FAST environment is needed, taking into account new requirements due to different dimensions, weights and geometries. The use of virtual prototyping and the possibility to involve a great number of persons, not only mechanical designers but also physicist, plasma experts and personnel assigned to remote handling operations, made them to share the multiphysics design experience, according to a concurrent engineering approach. Nevertheless, according to the main objective of any satellite tokamak, such an approach benefits the study of enhancements to ITER RH system and the exploration of alternative solutions. © 2013 Elsevier B.V.
Keywords: Divertor | FAST | Fusion engineering | ITER | Remote handling | Virtual prototyping
Abstract: The ISO 9001: 2000 requires the phase of design validation in order to demonstrate that the design output are able to satisfy specified or forecasted user requirements; for this reason, generally, physical prototype are realized in order to evaluate real product performances and their correlation with simulated ones. In this paper, the use of virtual inspection probes to validate playground equipment design is studied, pointing out limits and defining the optimal test strategies. Through the use of Robust Design techniques the authors show that the combined use of real time shadows and positional sound feedback allows to reduce the percentage of wrong inspections in the validation phase of playground equipment design. The authors develop an inspection probe simulation tool in virtual immersive environment. In particular, this tool ensures the collision detection through visual and sound feedback and increases the realism of the immersive environment. Finally, an experimental session, using a physical prototype of playground equipment, is carried out in order to compare these results with the ones coming out from the VR experiments. For a standard entrapment test, the authors assess the dependences of false and missed alarm by the diameter of the openings to evaluate and establish an acceptability threshold for the usability of the virtual probes. © 2013 Springer-Verlag France.
Keywords: Design validation | Grasping techniques | Playground equipment | Usability | Virtual reality
Abstract: The aim of the paper is to address an innovative methodology for assessing the usability of a product. This methodology is particularly suitable for designing products that provide their main functions through their control interfaces. In particular, this case study relates to the usability assessment of two control devices for a wheelchair-mounted robot manipulator to assist physically disabled people. The study focuses on defining a synthetic usability index on the basis of two currently used methods: the multi criteria decision analysis and the Saaty's analytic hierarchy process. Several virtual reality (VR)-based experiments have been conducted, set up in accordance with a cross-array experimental plan, that adequately caters for both control and noise factors. Quantitative measures and subjective user evaluations have been collected to maximize the effectiveness, the efficiency and the satisfaction perceived by users while using the product. Compared to the literature on the subject, the proposed approach provides both more flexibility in defining quantitative indexes and more adequate results, even when involving only a small sample of users in the participatory design session. The use of VR technologies for the collection of the experimental data has been essential in terms of safety, costs and repeatability of the tests, as well as of the robustness with respect to noise factors. © 2012 Springer-Verlag London Limited.
Keywords: Analytic hierarchy process (AHP) | Assistive robotics | Participatory design | Usability index | Virtual reality experiments
Abstract: The challenge of reducing designing time for new mechanical assemblies, especially in the context of large companies, encourages the use of methods and tools aimed to support designing activities and to re-use the company know-how. Furthermore, the design choices must be rapidly check to avoid errors that could cause delay or expensive re-designing. In such a context, the graph theory and related algorithms could be used to define a transfer function, easily to implement, that governs a software tool able to support the designing activities. Therefore, the paper presents a designing approach, based on the graph theory, aimed to generate the geometric modeling of mechanical assemblies. The approach and the software tool are useful both for designer and companies that want to customize and improve such activities. Finally, the paper shows the case study related to the design of a transversal manual gearbox and the generation of a GUI, developed in Mat LAB® environment, to validate the approach.
Keywords: CAD modeling | Digital pattern | Graph theory | Graphical user interfaces | Mechanical design
Abstract: Trailers are used to carry logs having specific dimensions for logging extraction operations, secondary transportation, and agricultural activities. The main objective of this study was the design of a timber trailer capable of manual loading operations and suitable for rough terrain conditions to be used in combination with a farm tractor in the western Black Sea region of Turkey. In the proposed methodology, a House of Quality diagram was used to transfer customer requirements into quality characteristics, and focus the development of the product toward customer satisfaction. Negative correlations between quality characteristics were solved using the TRIZ contradiction toolkit and generating different concepts. Inventive solutions provided by TRIZ were designed with parametric CAD software. Several concepts were compared in a participative design review session in an immersive virtual reality environment. To choose an optimal concept, the analytic hierarchy process (AHP) was used. The final concept has a total length of 3.35 m, width of 1.34 m, and height of 1.8 m. The mass is 2700 kg, the payload capacity is about 2.33 m3, and the total volume of the chassis is 2.68 m3 The angle of rollover is 26.9°, the door is reachable by 90% of the population, and the lower back analysis performed for the loading operation showed a maximum value of 2597 N. The final concept is capable of movement in steep terrain and with the presence of obstacles, carrying logs up to 3-m long. It is more productive among high-density stand trees, allows for ergonomic loading operations, and reduces environmental damage to soil and vegetation. © TÜBİTAK.
Keywords: AHP | Ergonomics | Forest harvesting | Interactive design | QFD | TRIZ
Abstract: It was reported that next to style, comfort is the second key aspect in purchasing footwear. One of the most important components of footwear is the shoe sole, whose design is based on many factors such as foot shape/size, perceived comfort and materials. The present paper focuses on the parametric analysis of a shoe sole to improve the perceived comfort. The sensitivity of geometric and material design factors on comfort degree was investigated by combining real experimental tests and CAD-FEM simulations. The correlation between perceived comfort and physical responses, such as plantar pressures, was estimated by conducting real tests. Four different conditions were analyzed: subjects wearing three commercially available shoes and in a barefoot condition. For each condition, subjects expressed their perceived comfort score. By adopting plantar sensors, the plantar pressures were also monitored. Once given such a correlation, a parametric FEM model of the footwear was developed. In order to better simulate contact at the plantar surface, a detailed FEM model of the foot was also generated from CT scan images. Lastly, a fractional factorial design array was applied to study the sensitivity of different sets of design factors on comfort degree. The findings of this research showed that the sole thickness and its material highly influence perceived comfort. In particular, softer materials and thicker soles contribute to increasing the degree of comfort. © 2012 IPEM.
Keywords: CAD-FEM modeling | Comfort assessment | Fractional factorial design | Numerical-physical correlation | Pressure map | Shoe sole
Abstract: Nowadays, economical, technical and ergonomic factors have a great importance on the design of the agricultural tractors. The paper illustrates the use and the management of heterogeneous product information (manual measurements and drafts, 2D drawings, technical documentation, photos), advanced CAD modeling tools and digital human models, for the redesign and the ergonomic optimization of an agricultural tractor's driver cab. The project development has been organized using a top-down approach in a collaborative environment. At first, a manual measurement with gauges allowed to realize a technical draft of the whole agricultural tractor and of each component part of the driver cab. Then a main skeleton has been created in Catia V5 environment in order to specify all the datum elements necessary to model each sub-assembly of the tractor. Cabin, platform, engine, tires, seat, dashboard and controls have been organized separately and modeled considering the details related to the manual measurements and to the technical standards. Once obtained the 3D CAD model of the tractor, an opportune questionnaire was prepared and a test campaign was carried out with real operators in order to define the more critical control devices within the driver cab, as regards to usability and ergonomic issues. An "Ergonomics' Evaluation Index" (EEI) was defined taking into account the posture angles of the operator and the Rapid Upper Limb Assessment analysis tool available in the "Ergonomics Design & Analysis" module of Catia V5 based on the use of a digital human model. The index was validated comparing the results of tests carried out using virtual manikins of different percentiles performing a specific driving task, with the results of tests carried out by real operators, of the same percentiles, performing the same driving task. Critical values of the EEI obtained during some driving tasks in virtual environment, suggested to modify the shape and the position of some control devices in order to optimize the ergonomics of the driver cab. The adoption of the top-down modeling based approach allowed each change on a singular component part to be automatically propagated on the whole assembly, making easy the changes on the virtual prototype. Copyright © 2012 by ASME.
Abstract: The paper deals with a functional approach to optimal dimensioning of automotive transmission shafts. In particular, the paper summarizes the results of a research activity developed on automotive transmission shafts to reduce the unpleasant movement of the transmission lever known as "shift lever movement". The design problem was faced by focusing the axial clearances of the wheels assembled on the transmission shaft. First, the functional approach to optimal dimensioning proceeds from the study of different working conditions of the automotive manual transmission and focuses on corresponding geometrical constraints and design parameters. Then, it uses simplified schemes, each of them related to a different working condition, to set a series of functional dimensioning loops for the transmission shaft. Subsequently, the approach introduces an appropriate index to evaluate the Information Content for each dimensioning scheme and it addresses the optimal dimensioning scheme, related to the minimization of the Information Content. After this, the approach foresees worstcase to check the axial clearances of the wheels assembled on the shaft. In a such way the effect of the dimensioning are directly evaluated in terms of performances of the transmission. In fact, the reduction of axial clearances for the wheels assembled on the shaft causes a direct reduction of the "shift lever movement". The functional approach to optimal dimensioning is applied to an automotive transmission set and the proposed dimensioning schema of the shaft is compared with different dimensioning schemes including one currently used in an international automotive company. A final discussion of the results, in terms of reduction of axial clearances of the parts assembled on the shaft, is provided. Copyright © 2012 by ASME.
Keywords: Functional dimensioning | Information content | Transmission set
Abstract: In this work we apply an innovative participative design approach for the quality evaluation of virtual prototypes of new industrial products (i.e. concept designs), by adopting statistical procedures and carrying out tests in an immersive VR environment. This methodology has been fully exploited through a case study concerning the choice of the optimal design for the interiors of a new regional train. Following this approach, the optimal concept design is defined at the end of a process consisting of five phases: identification of the quality elements of the concept design, classification of the quality elements, generation and quality evaluation of product concepts and, finally, definition of the optimal concept. According to the applied methodology after the identification of the customer's needs, a structured set of quality elements has been defined and, successively, classified according to Kano's theory. Following the approach of conjoint analysis, the design factors have been combined according to an experimental plan to form product virtual concepts. During the concepts generation phase we have explored those product architectures that integrate design characteristics correlated to the set of quality elements. The concepts have been created according to comfort, ergonomic and safety criteria. In particular we have considered the ergonomics of places and furniture dimensions, through the use of virtual manikins. The evaluation of the quality of the different concepts has been carried out in the VR laboratory (named "VRTest") of the Competence Centre for the Qualification of Transportation Systems founded by Regione Campania according to an original statistical procedure and has involved a group of experts in train's interiors design and a group of common users of regional trains. Copyright © 2012 by ASME.
Keywords: Concept design | Participative design | Quality engineering | Railway engineering | Virtual Reality
Abstract: The preventive knowledge of serviceability times is a critical factor for the quantification of after-sales services costs of a vehicle. Predetermined motion time system are frequently used to set labor rates in industry by quantifying the amount of time required to perform specific tasks. The first such system is known as Methods-time measurement (MTM). Several variants of MTM have been developed differing from each other on their level of focus. Among them MTM-UAS is suitable for processes that average around 1-3 min. However experimental tests carried out by the authors in Elasis (Research Center of FIAT Group) demonstrate that MTM-UAS is not the optimal approach to measure serviceability times. The reason is that it doesn't take into account ergonomic factors. In the present paper the authors propose to correct the MTM-UAS method including in the task analysis the study of human postures and efforts. The proposed approach allows to estimate with an "acceptable" error the time needed to perform maintenance tasks since the first phases of product design, by working on Digital Mock-up and human models in virtual environment. As a byproduct of that analysis, it is possible to obtain a list of maintenance times in order to preventively set after-sales service costs. © 2012 Springer-Verlag.
Keywords: Digital humans | Ergonomics | MTM-UAS | Predetermined time analysis | Virtual maintenance | Work measurement
Abstract: This work concerns the usability assessment of two control devices for a wheelchair-mounted robot manipulator aimed at assisting physical disabled people. The assessment of the usability is a crucial issue for the design of such products, since they communicate with their users not only through their shape, but especially through their control interfaces. In a first phase, the study focuses on defining a synthetic usability index on the basis of the methodologies currently in use. In a second phase, some experiments in Virtual Reality (VR) have been carried out. The use of VR technologies for the collection of the experimental data has been fundamental in terms of safety, costs and repeatability of the tests. Another important result has been the reduction of the sources of noise, thanks to preliminary simulations in VR and non-invasive questionnaires and interviews for capturing the subjective perceptions of users. Finally, it is worth noticing that the developed model may show its validity also in evaluating the usability of other products. Indeed, it provides a basis for a more extensive use of VR experiments for evaluating different design solutions in terms of global usability requirements. © Organizing Committee of TMCE 2010 Symposium.
Keywords: Analytic Hierarchy Process (AHP) | Assistive robotics | Participatory design | Usability index | Virtual reality experiments
Abstract: Site-specific wind potential assessment shows difficulties mainly because it needs very long on-site anemometric monitoring. This paper proposes to reduce the long-term monitoring by exploiting other initial information about parameters to be estimated via MCMC (Markov chain Monte Carlo). The proposed Bayesian approach allows the integration of prior information (e.g. obtained from atlases, databases and/or fluid-dynamic assessment) with sampling data, and furnishes effective and timely posterior information about Weibull parameters of the wind speed distribution. Real sampling data, collected from a southern Italian site, are analysed in order to illustrate the main features of the methodology. Moreover, the effectiveness of both the filtering strategy adopted to deal with the high correlation that usually characterizes the anemometric data, and the seasonal adjustment proposed to obtain a sample unbiased by seasonal effect is highlighted. The results of the application show that the proposed methodology fits the applicative needs very well. A bootstrap simulation remarks that the attained precision of the Bayesian estimates carried out from a one-month sample is comparable to the maximum likelihood estimates obtained from an actual one-year sample. © 2010 John Wiley & Sons, Ltd.
Keywords: Bayesian estimators | Markov chain Monte Carlo | Weibull distribution | Wind speed distribution
Abstract: The paper aims at providing a methodological contribution to the concept design of train interior in order to improve the quality perceived by users in compliance with railway standards. Indeed, the combined use of advanced CAD tools, experimental statistical methods and Virtual Reality tools allows developing, selecting and experimentally evaluating new concepts. The design cycle starts both from designers' proposal and the identification of user's needs; then, it makes use of datum-based CAD models in order to generate virtual concepts that satisfy railway standards; the cycle proceeds with the immersive evaluation of virtual prototypes, performed by potential and expert users in Virtual Reality. The identification of the optimal concept closes the design process. This procedure can be iterated in order to improve the quality of train interiors, evaluated thanks to the user's involvement in the design cycle. In this work a case study on seat design of a regional train is presented, developed at the Virtual Reality laboratory, named, of the Regional Centre for the qualification of transportation systems set up by Campania Regional Authority. © 2009 Springer-Verlag.
Keywords: CAD models | Concept design | Designfor quality | Kano methodology | Virtual reality
Abstract: Purpose - This paper aims at defining a structured process of continuous innovation in the product concept development phase by a statistical-based Kansei engineering (KE) approach. It consists in the identification of quality elements satisfying both functional and emotional user needs, i.e. the total quality elements. Design/methodology/approach - The approach is developed integrating results from Kano and KE analysis. Three statistical methods considered to be suitable for KE study, are used: supersaturated design for concept configuration, ordinal logistic regression for data analysis, and EVA method for quality evaluation of the optimal concept. These methods are compared with the most used ones in KE regarding their efficacy, efficiency and easiness of use. An innovative procedure to exhibit concepts in a KE session is also presented. It uses the abstraction and association idea principles to elicit users' grade of agreement for a particular Kansei word. Findings - The proposed approach is fully exploited through a case study on train interior design, developed in a virtual reality (VR) laboratory. The evaluation of comfort improvements obtained by means of a new handle and handrail design is carried on with expert users in VR. A consistent increase of a quality index, by using the defined approach, was obtained. Originality/value - This work aims at contributing to the conception of new product solutions, which are appealing and saleable. The availability of virtual reality technologies and software capable to manage complex statistical analyses, will concretely aid designers and engineers in the ideation of high-emotional-quality products, which can be helpful for innovative enterprises to maintain and even increase their market position. © Emerald Group Publishing Limited.
Keywords: Customer satisfaction | Design and development | Product development | Total quality management
Abstract: This paper presents a statistical methodology to improve the car packaging setup in the first phase of a new mini-car design. An original procedure for comfort assessment using virtual manikins is formulated. The Robust Design approach enables to identify the optimal level for the main design factors of the new car packaging. The optimal solution is the most insensitive to anthropometric variability. The case study of a new mini-car packaging setup is exploited. The experimental results in virtual environment are obtained using the virtual manikin Jack by UGS. On the base of adequate comfort indexes, the proposed methodology allows defining a car packaging which is, on average, more comfortable than that obtainable as initial setting by applying the Enhanced SAE Packaging Guidelines and the Posture Prediction algorithms proposed by the UMTRI (UMI-USA). © Springer Verlag France 2007.
Keywords: Human variability modelling | Robust design | Virtual ergonomics
Abstract: The early identification of the optimal concept is a critical task of the design process in order to increase the chances of satisfying customers. The challenging aspect of the approach proposed in this work relies in the quality evaluation of virtual prototypes of new industrial products (i.e. concept designs) by adopting a statistical procedure previously applied to service industries. Following this approach, the optimal concept design is defined at the end of a process consisting of five phases: identification of the quality elements of the concept design, classification of the quality elements, generation and quality evaluation of product concepts and, finally, definition of the optimal concept. Currently, virtual reality (VR) environment offers the opportunity to evaluate the characteristics of different virtual prototypes by involving experts and/or customers, overcoming the need for several physical prototypes. On the other side, the dynamics of simulation and the stereoscopic visualization in VR environment provides a more realistic and impressive interaction with virtual prototypes than in CAD environment. The proposed methodology is fully exploited through two case studies: the choice of the optimal design for a traditional Neapolitan coffee maker, addressed by the Italian designer Riccardo Dalisi, and for a subassembly of a new minicar. © 2006.
Keywords: Concept design | Quality engineering | Virtual reality