Landi Daniele
Ricercatore TD(B)
Università degli Studi di Bergamo
daniele.landi@unibg.it
Sito istituzionale
SCOPUS ID: 57046477500
Orcid: 0000-0003-0809-3662
Pubblicazioni scientifiche
Abstract: Eco-design has increasingly become a necessity to safeguard the eco-system. However, eco-assessment methodologies, e.g. the Life Cycle Assessment (LCA), fail to rigorously and reliably support the evaluation of future products, as well as emerging technologies, ideas and concepts in eco-design. This study lays some theoretical foundations for the development of a step-divided systematic method to support Prospective LCA based on a structured patent analysis. In order to answer the prescribed requirements, for each of them, some specific strategies of patents analysis have been collected and systematically organized. The aim of the proposed method is to compare technologies with a different level of maturity, contrary to the traditional LCA which overestimates the existing ones only because are more optimized. The proposed method was applied to a real case study about the production of titanium powder to perform the prospective LCA of the patented future developments of the components of this process. The results showed that, patent analysis, systematized through the proposed method, can be used to forecast the environmental impact of a future product. The scale-up of the performances can be esteemed, by ensuring at the same time the comparability and the reliability and the results, as prescribed by reference standards.
Keywords: eco-design | patent analysis | product forecasting | Prospective LCA
Abstract: Healthcare sector has a significant impact on the environment. While telemedicine techniques could be a solution to increase its sustainability, the methods for a quantitative evaluation are poorly applied and often generate a partial assessment. Therefore, the main aim of the present research is the definition of a methodology for a preliminary quantification of the environmental impact generated by the process to perform a televisit. The methodology has been structured in 4 phases: process identification, impacts detection, data elaboration and results analysis. A real case study was performed including follow-up televisits for cardiopathic patients. After having defined the setting of the study, a list of tasks was prepared. For each task physical wastes, devices energy consumption, telecommunications and transportation were investigated. Equivalent CO2 (CO2 eq) was calculated involving sources from studies in literature and official websites. Although televisit reduces the impacts caused by patient travel, the use of telecommunications during supporting activities caused a significant amount of CO2 eq. Therefore, a complete assessment has to include the entire process of televisit. Despite the average input data, the methodology offers a base that could be improved with other impact indicators.
Keywords: Assessment Tool | Environmental Sustainability | Process Modeling | Sustainable Development | Telemedicine
Abstract: The main challenge to face in the development of energy-related products is represented by the adoption of effective design for sustainability strategies that encompasses the adoption of engineering design tools, knowledge collection, and reuse/sharing in technical departments. This present paper proposes an engineering design for sustainability methodology that assists engineers in developing energy-related products in compliance with ecodesign standards. The methodology uses virtual prototyping tools to assess energy consumption in compliance with energy labeling directives and analyze different use scenarios. The results obtained by numerical simulations (e.g., Finite Element Method—FEM, Computational Fluid Dynamics—CFD) are used to create specific design eco-knowledge in the field of energy-related products. Numerical results are linked with design configurations to understand the benefits introduced by engineering design choices. This knowledge is stored in a structured database with the aim of being reused when a new product is developed or improved/upgraded. The case study of an induction hob, belonging to the household appliance product family, is investigated to understand the potential and drawbacks of the presented approach in a real application. The results show that potential energy and environmental performance benefits are achieved (e.g., reduction of energy losses, achievement of A+ energy class, and overall life cycle environmental impact reduction). Additionally, a new set of ecodesign guidelines are defined for this product family and employed in developing new compliant products belonging to the same family.
Keywords: ecodesign | life cycle engineering | virtual prototyping
Abstract: The significant consumption of resources within the healthcare sector underscores the need to address both efficiency and sustainability concerns. Telemedicine has been identified as one of the most promising pathways for reducing the environmental impacts of the healthcare sector. However, a comprehensive sustainability assessment is still required. The main aim of the present study is to conduct a systematic literature review to explore approaches and methodologies employed for quantifying the environmental, social, and economic impacts of telemedicine. Moreover, the research seeks to determine whether the approaches focus on a single aspect or whether they allow for a comprehensive assessment including all three sustainability pillars. The searching phase was conducted in the Scopus and PubMed databases, considering last 10 years (i.e., 2013–2023). Keywords were related to remote care and sustainability impact fields. Following the PRISMA framework, out of 477 articles, 91 studies were included in the analysis. Primary findings highlighted that studies on telemedicine impacts predominantly focus on transport-related aspects, emphasizing direct emissions and associated costs that are avoided and time savings. Televisit emerged as the most investigated remote care activity. Database and conversion factors were mainly employed for analysis, while other methodologies were sporadically mentioned in the literature. Despite numerous papers addressing these issues, a standardized and comprehensive methodology still appears to be lacking. Future works should consider the entire life cycle process, including more stakeholders. A defined approach will be fundamental to move beyond theoretical discussions and provide actionable insights for healthcare practitioners, policymakers, and researchers.
Keywords: environmental and public health | healthcare sector | sustainable development | telemedicine
Abstract: Carbon fibre is the most common reinforcing phase in composite materials. However, it is difficult to determine the performance parameters of a monofilament. This paper provides an efficient method for performing the global layup optimization of composite laminates, considering the relationship between material characteristics and process parameters. In particular, a new method is proposed that, by integrating commercial tools, can support designers in the design and construction of carbon fibre components. The approach involves four functional groups that interact with each other: requirements and specifications, material definition, process implementation, and design and simulation. The idea is to create a continuous process to realize continuous product optimization. The approach was applied to the optimization of the front wing of a Formula 4 vehicle. After the validation method phase, through a comparison between real data and numerical simulations, product optimization was conducted. Different optimized solutions were obtained, and the solution minimizing the mass but ‘allowing the vehicle to bear stress and strain values within the required limits was chosen. This methodology can be applied to support the designer during both the early design phase and the optimization phase of laminated products.
Keywords: Carbon fibre | Combined finite discrete element method | Lamina (ply) | Laminate optimization | Laminates | Multi-objective optimization
Abstract: The prospective life cycle assessment (pLCA) methodology allows to estimate the future environmental impacts of emerging technologies and immature products not yet on the market. To make up for the lack of information on the product, the pLCA makes extensive use of secondary data, taken from various sources including patents which contain prospective information of industrial interest. To date, there have been attempts to show the potential of patent analysis in supporting pLCA, but never extensively and as proposed in this work with a truly systematic approach. In fact, this study aims to demonstrate how an accurate analysis of the information contained within patents can provide solutions to a number of open problems underlying the pLCA. More specifically, it was shown how patents can serve for: the support to experts in technological forecasting, the definition of scenario ranges, the support to the background and foreground systems modelling, the comparison of the future diffusion of a mature and an emerging technology, the support to the projections based on pathways to reach policy reductions to ensure time consistency. For each question, it was explained how to decline the patent analysis, i.e. which parts of the patents to analyse and how.
Keywords: eco-design | emerging technologies | ex-ante LCA | patent analysis | prospective LCA
Abstract: Background: Telemedicine has emerged as a potential solution to mitigate the significant greenhouse gas emissions of the healthcare sector. A comprehensive evaluation is required to quantify the environmental benefits of its implementation. Objectives: The study aims to compare the environmental sustainability of in-person and virtual examinations for heart failure patients. Methods: A standard life cycle assessment has been applied to quantify the equivalent CO2 of direct and indirect activities required to release a medical examination (virtual or physical) for a patient in an Italian hospital. Inputs of the analysis include electronic devices of hospital and patients, energy consumption, wastes, internet usage and patient travel. Depending on the type of visit (virtual or physical), inputs have been processed differently, considering actual consumption and utilization. Results: Televisit reduces emissions from 9.77 kgCO2e to 0.41 kgCO2e. Transport and internet data use are key inputs for in-person (i.e., 98%) and telemedicine visits (i.e., 72%), respectively. Discussion: Given the frequent car travels, telemedicine emerges as a tool to improve environmental benefits and reduce time for patients and caregivers.
Keywords: carbon footprint | environmental impact | life cycle | sustainable development | telemedicine
Abstract: In recent years, Additive Manufacturing (AM) proved to be extremely competitive in the production of small lots of pieces with high customization. Compared to subtractive production, AM allows to make less waste of material and reproduce highly complex components without increasing their costs. Some studies also assessed the environmental advantages of AM, which could be significant in the event of its future large-scale diffusion. However, an environmental assessment considering the aspects of hierarchical complexity that can be obtained with AM is missing in literature. This study bridges this gap by evaluating and comparing the environmental impacts resulting from the implementation of different design for AM options defined at different levels of detail, e.g. shape, cellular internal structure and infilling. For each option, the environmental impact arising from the mass and energy of manufacturing was calculated. The data were obtained through virtual simulations with commercial software for design for AM (i.e. nTopology) and experimentation with a 3D printer that produces pieces in polylactic acid (PLA). The obtained results highlighted the preponderant role of energy consumption deriving from the path of the print head in defining the environmental impacts, with respect to the quantity of material in the piece. In particular, we have seen how the shape and infill optimization (if the density is lower than 50%) reduce the environmental impacts, while the lattice structure optimization increases them, due to the more energy and time-consuming printing process.
Keywords: Design for Additive Manufacturing | Eco-assessment | Eco-design
Abstract: Nowadays, 10–34% of patients undergone Total Knee Arthroplasty (TKA) continues to have pain and reduced mobility. New technologies in TKA have been developed to reproduce the native anatomy, respecting the natural joint line, by means of customized implants or following the kinematic alignment. In this context, the present research aims at defining a method to create customized implants. In particular, three different situations have been studied. The first condition is the healthy knee, that is used as reference for further analysis. For the second situation, an off-the-shelf prosthesis has been virtually implanted, following the kinematic joint line. In the third solution, a custom-made knee implant has been created. In all the three cases, FEA has been performed to study how load transmission and stability change after TKA. To reach the goal, high resolution Magnetic Resonance (MR) images of a healthy knee have been employed. Three-dimensional models of the knee have been reconstructed through a segmentation process, starting from DICOM images. Hence, the three situations have been studied. Distribution of pressure and stress are comparable in the two solutions, since they both maintain the natural joint line. Improving the kinematic function is crucial to increase patient satisfaction. According to the patient’s anatomy, the surgeon can choose between the standard and the personalized prosthesis. The studied customized approach allows to overcome the limits of conventional TKA since it permits to create geometries, which accommodate a variety of anatomical variations.
Keywords: 3D modeling | Customized knee implants | FEA | Kinematic alignment
Abstract: Obtaining a quantification of the environmental impacts of its products is now necessary for a company for several reasons, e.g. planning eco-design interventions, enhancing marketing aspects, obtaining a certification for trade. Life Cycle Assessment (LCA) is one of the best known and most appreciated methodologies to support this, however its application in the most useful way for the many purposes that may exist at an environmental level struggles to establish itself in companies. To understand how to improve the application of the LCA, this paper systematically analyzes and classifies the many problems identified during research activities on the subject in various companies from 2010 to today by the same authors. Compared to other approaches in the literature, in this case, the database is much larger and heterogeneous and the authors have full knowledge of it, having personally contributed to creating it. The result is a set of problems on the application of LCA, divided into different classes: motivations, inventory, impacts calculation, interpretation of the results. Finally, a set of strategies of intervention were proposed by the same authors to limit these problems.
Keywords: Eco-design | LCA | Life cycle assessment
Abstract: This article proposes a design framework for additive manufacturing (AM) to solve contradictory design problems. Different structural features are selected within different levels of detail (e.g., cellular structures, infill, porosity) to realize the conflicting requirements and properly combined within the structure of the product. To do this a multilevel interpretation and classification of the options present in a commercial software of Design for AM was provided. Then, criteria to combine the different structural features within the structure of the product were proposed, starting from some principles of the TRIZ (i.e., Russian acronym for “Theory of Inventive Problem Solving”) method. The method was applied to design a dental prosthesis and the results, obtained by testing a simplified plastic sample were analyzed. The contradictory problem deals with the realization of both the mechanical resistance, during the chewing, and the thermal resistance to prevent the thermal dilatation during the workpiece finishing operations on machine tools. The sample designed with the proposed method exhibited better performances in both the requirements compared to another sample, made with a microstructure chosen in a completely random way.
Keywords: Design for Additive Manufacturing | Hierarchical complexity | Multilevel design | TRIZ
Abstract: Automotive and tire markets are constantly increasing, with a huge quantity of end of life tires (ELT) that have to be managed each year to mitigate potential environmental issues. Thanks to the adoption of specific legislation about the waste management, most of the materials deriving from ELT are properly recovered, but there is still a room for improvement in particular for what regard the ELT fibers that are currently dismantled in landfills or incinerated. In this context, the present study aims to propose an innovative scenario for the management of ELT fibers, focused on the reuse of such material for the production of polypropylene (PP)-based compounds. The final objective is to validate this idea by verifying the technical feasibility, as well as to understand if and to what extent reuse of ELT fibers in plastic compounds leads to environmental benefits. From the technical point of view the proposed PP-based compound reinforced with 45% ELT fibers in weight resulted to have acceptable properties in terms of mechanical resistance and extrudability and good performance in terms of impact resistance that suggests the applicability in several applications as pallets manufacturing. From the environmental point of view, the Life Cycle Assessment (LCA) study at midpoint level suggests that the proposed scenario can be considered an interesting option against the other currently implemented EoL strategies, even if for some impact categories it does not lead to environmental benefits. However, by jointly considering potential damages on human health, ecosystems and resource depletion at endpoint level, the proposed reuse scenario can be univocally considered the most environmentally sustainable strategy for ELT fibers management.
Keywords: End of life tires
Abstract: Prospective life cycle assessment (LCA) was introduced with the goal to evaluate the environmental sustainability of eco-design solutions (i.e., ideas, prototypes, immature products, emerging technologies) prospectively rather than existing products, at the present time, as in traditional LCA. The main difference lies in the inventory, which is foreground and is based solely on the extraction of data from prospective documents, including patents, although this task, is tricky and can make the final result uncertain. This study proposes a systematic method to collect all the flows about a specific function of the product lifecycle from patent literature for building the foreground inventory of prospective LCA, ensuring comparability, data quality and scale-up. This was done by studying the intersections between patent analysis techniques and LCA requirements for reducing the uncertainty, prescribed by ISO 14040, ISO 14044, Pedigree Matrix and Data Quality Indicators for Life Cycle Inventory Data. The application of the proposed method to a case study related to the production of titanium powders using an innovative process revealed its main advantages in collecting patents and extracting data. Patent search recall and precision are increased. Patents are filtered by seeking a trade-off to ensure time consistency and avoid anomalous fluctuations in the data resulting from predatory patenting strategies. Data reliability and significance are controlled. Results can be expressed without levelling them around the average value, but adding time evolution and forecasting considerations. For example, the global warming potential (GWP) of the innovative process is 1.5 % lower than the GWP of the current process, considering the average patent data of the last 10 years. In addition, this value showed a 1 % increase for each year.
Keywords: Eco-design | Patents | Prospective LCA
Abstract: BACKGROUND: Healthcare sector has a significant impact on the environment and people well-being. Therefore, it is interesting to understand how healthcare contributes to sustainable development. OBJECTIVE: The study aims to perform a literature review on the methodologies applied to quantify environmental impact in healthcare with an attention to telemedicine activities. METHODS: Scopus and PubMed databases were investigated between 2018 and 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) frameworks was followed for article selection. RESULTS: From initial 183 articles, 50 full-studies were included. Life-cycle assessment method proved to be a standard for assessing the impact of devices used in clinical practice. Indeed, for the investigation of care activities a unique methodology was not defined. The assessment of telemedicine is mainly based on avoided travels, and a standard methodology is still missing. CONCLUSIONS: To move toward a sustainable development other aspects of sustainability should be investigated.
Keywords: Environmental Impacts | Healthcare | Sustainable Development | Telemedicine
Abstract: In the present global health emergency, face masks, gowns, caps, gloves play a key role in limiting the diffusion of the COVID-19 pandemic, by acting as physical barriers to avoid droplets and filtrate exhalations coming from infected subjects. Since the most widespread devices are disposable products made of plastic or rubber materials, this means that relevant quantities of fossil resources are consumed, and huge amounts of wastes are generated. Currently the end of life of personal protective equipment (PPE) represents a problem in environmental, economic, and social terms. The market considers two possible disposal scenarios: incineration with energy recovery or landfill. In both cases, significant impacts are achieved both on the environment and on human health. This study aims to propose and validate a new scenario for PPE based on material reuse for bituminous conglomerates. The Life Cycle Assessment methodology and the experimental tests has been used to assess the environmental impacts in terms of both ReCiPe midpoints and endpoints and for demonstrate the technical feasibility of this new scenario. From an environmental point of view, relevant benefits were observed in comparison with the standard incineration for energy recovery or disposal in landfill.
Keywords: Circula Economy | DPI | Enviromental impact | Reuse
Abstract: The recent increase of interest in manufacturing techniques using metal powders, including additive manufacturing (AM), metal injection moulding (MIM) and hot isostatic pressing (HIP), has made methods for manufacturing alloyed metal powders especially iron-, nickel and cobalt-based alloys, a topic of much increased importance. The ‘classical' PM sintered parts business did not attract much research interest, but the last twenty years have seen first, the advent of MIM and HIP and, more recently, AM or three-dimensional (3D) printing. These newer branches of PM make quite different demands on the metal powders that they employ. Metal powders can be produced by a range of techniques including solid-state reduction, electrolysis, atomization, chemical processes, and mechanical comminution. Among these methods, atomization and solid-state reduction are the most popular methods. Metal atomization powder production typically includes three steps: melting the raw materials, atomizing the intermediate products, and solidifying the resulting metallic powders. Although additive techniques are generally sustainable, the production of powders must be studied carefully. In this paper, the Life Cycle Assessment methodology has been used to assess the environmental impacts of titanium powder production in terms of both ReCiPe midpoints and endpoints. Then some solutions to minimize the environmental production impacts have been extracted from patents, following a systematic procedure, and have been reported and qualitatively assessed.
Keywords: Life Cycle Assessment | Metal powered | Patent analisys | Prospective LCA
Abstract: Due to the COVID-19 pandemic, global personal protective equipment (PPE) volume production and demand increased by 300-400% between 2019 and 2021. In this scenario, the present study aims to propose and validate an innovative circular economy scenario for end of life (EoL) PPEs, reusing them to produce reinforced bituminous mixtures. Despite that several studies confirmed the possibility of reusing plastic in the asphalt mixtures, none of them investigated the potential of PPEs, highlighting the innovativeness in the scientific panorama. Five different alternatives of EoL PPE mixtures (different products, materials, dosages, etc.) were tested at laboratory scale to verify the technical feasibility of the proposed scenario. The most promising solution resulted to be the mix of gloves and face masks composed by polypropylene, polyethylene, nitrile and lattice at a dosage of 0, 5% weight/weight that allowed to produce bituminous mixtures with acceptable performances in terms of relevant mechanical parameters while recycling waste PPEs. This leads to environmental benefits, since more than 3kg of EoL PPEs per square meter of road pavement can be reused instead of disposed (about 1, 5 million tons/year considering the bituminous mixtures produced at European level), as well as economic benefits for public administrations and the collectivity, due to the reduced landfilling of solid wastes.
Keywords: Circular economy | Personal protective equipment | Reinforced asphalt | Reuse
Abstract: This study collects and discusses the misperceptions about eco-design, renamed eco-misperception, emerged from a group of students while applying common eco-design methods. We define eco-misperceptions as erroneous interpretations of the novice eco-designers, about the environmental sustainability of design solutions, according to more experienced eco-designers. They are detectable by qualitatively or quantitatively analysing how the novice eco-designers present the proposed or identified design solutions. To obtain the eco-misperceptions, the end-of-year projects and the interviews of 61 students attending the master's degree in mechanical and management engineering from two Italian universities were considered. These projects concern the reduction of the environmental impacts of three real industrial products, supported by existing eco-design methods. The systematic analysis of the proposed solutions showed that students committed different eco-misperceptions, not related to the comprehension of eco-design but to its practical application and involving different aspects: the psychological inertia leading to address a given problem in a habitual way, the selection of the not appropriate examples to inspire, a limited consideration regarding the life cycle of the product, the difficulty in selecting the appropriate level of detail during eco-design and eco-assessment, and the difficulty in dealing with problems presented in a descriptive way rather than through a precise mathematical formulation. Unlike other contributions in the literature, in this study the collected eco-misperception are in greater number, more heterogeneous, more detailed in definition and contextualised through examples that can be used to improve eco-design courses.
Keywords: Eco-design | Eco-knowledge | Eco-misperceptions | Teaching
Abstract: Different studies in the scientific literature have shown how the transition towards a circular economy (CE) can benefit from product design, although maintaining a rather broad and qualitative perspective of analysis. This study investigates and compares which product design strategies (from routinely design, structural optimization, industrial design and systematic innovation) are most used by students and professional designers to implement different CE strategies (i.e., waste reduction, reuse, remanufacturing, recycling and biodegradability). Students’ data were collected from year projects and MSc degree theses based on real industrial case studies and carried out in two Italian engineering universities, while those of professional designers, were collected from selected scientific articles. Among the main outcomes emerged that the design strategies deriving from systematic innovation were preferred by students quite clearly. The design strategies referred to industrial design, e.g., user-centered design and timeless design were preferred by professional designers. The design strategies related to routine design, i.e., materials substitution, reducing resources and energy consumption, and structural optimization, were indistinctly used by both students and professional designers. The obtained results and their discussion can be useful during eco-design teaching to show the main gaps that students should fill in comparison with professional designers.
Keywords: Circular economy | Circular economy strategies | Design strategies | Eco-design | Teaching | TRIZ
Abstract: The generation, storage and use of electric energy is a relevant issue for the modern society that is dependent from this energy typology for its activities (e.g. heating, goods production). Batteries are key components for the storage of electric energy, to be used for a large set of domestic, industrial and transport applications. The paper investigates the environmental impacts of two different battery technologies used as accumulator in the context of a production plant: (i) the lithium iron phosphate (LiFePO4) battery, and (ii) the sodium-sulfur (NaS) battery. The analyses have been performed according to the Life Cycle Assessment methodology, by using the ReCiPe method at midpoint and endpoint levels to quantify the potential environmental impacts. Results highlight the principal impact of two different technologies, considering all environmental indicators. Results show that the LiFePO4 solution can be considered the most sustainable solution for the considered industrial application. However, the difference is very small, within 2% and strongly influenced by the energy needed to recharge the batteries during the use phase. Instead, if we consider the production of batteries, the NaS solution resulted the most sustainable solution with an impact in terms of the aggregated single score damage category of about a half in comparison with the LiFePO4 solution.
Keywords: batteries | life cycle assessment | lithium iron phosphate | sodium-sulfur
Abstract: Additive manufacturing processes, such as Laser Additive Manufacturing (LAM), has become increasingly established in metal-processing industry offering versatile possibilities for producing individualized components or lightweight structures. LAM machines offer ecological and economical potentials due to comparatively low power and material demand. In general, Additive Manufacturing (AM), has been considered an alternative to the traditional manufacturing techniques, such as Subtractive Machining (SM), because allows the creation of new, light and complex products with an innovative design and manufacturing. Sustainability assessment is essential to identify and select the best technology among the alternative candidates. Sustainability of LAM needs to be evaluated for finding an optimal compromise between technical development and sustainability performance. The Life Cycle Assessment (LCA) methodology is applied to investigate the sustainability of Laser Engineered Net Shaping (LENS) by comparing that of the Computer Numerical Control (CNC) machining. The aim of this research is to analyze and compare the environmental impact between additive and subtractive manufacturing. In particular, CNC (SM) and LENS (AM) technologies have been chosen. A common spur gear has been defined as a case study. Therefore, the analysis allows to define the ecological characteristics of a new production technology compared to a gold standard such as CNC machining. Hence, the advantages and disadvantages of the reviewed additive technology are exposed. The ReCiPe midpoint results, shows advantages in term of environmental impact for the LENS manufacturing process, in particular for the damage to resource indicator.
Keywords: Additive Manufacturing | Ecodesign | Environmental sustainability
Abstract: According to the European Waste Codes 19.12.08, fibers derived from end-of-life tires (ELT) are classifies as a special waste to be sent to landfill or incineration with energy recovery. However, these activities would pose additional risks including soil pollution, and groundwater contamination. A change in the current ELT waste management practices is needed to reduce the environmental impacts. The aim of this paper is to present and investigate the technical and environmental feasibility of a circular economy path for ELT fibers. Several PP-based compounds have been manufactured and tested to verify the possibility of reusing ELT fibers in such an application. Then a Life Cycle Assessment (LCA) study has been carried out to compare the proposed reuse scenario with the two standard scenarios for ELT fibers. Reuse scenario leads to environmental savings for several impact categories, even if for some indicators the incineration is preferrable due to the additional resources and energy required needed to treat the dirty ELT fibers before reuse.
Keywords: Circular economy | End of life tires | Life Cycle Assessment | Reinforced compound
Abstract: The packaging is responsible for the production of a great amount of waste in the world. Every product comes with different levels of packaging to protect the product during shipping, store the content in the warehouse, and show the product to customers in retail shops. Therefore, the designer of packaging is more and more involved in a responsible analysis while defining the package configurations for a product. This paper proposes an approach to support the packaging configurations considering life cycle data, analytical structural analysis, and parametric cost modeling. Rules, formulas, and specific standards are formalized into a Knowledge Base. As a case study, the methodological approach has been applied to design the packaging of a household appliance. The results show the possibility to reduce the cost and environmental impacts of packaging by a responsible approach.
Keywords: Corrugated cardboard | Eco-design | EPS | Packaging
Abstract: A reflection about the evaluation of the environmental impacts arising from a technical solution obtained by applying some of the most common TRIZ (Russian acronym for Theory of Inventive Problem Solving) strategies is provided in this study. In fact, some of them provide suggestions to minimize the resources and make a device work better without adding additional substances or energy flows. However, the contained shortcomings for improving the environmental sustainability can only be fully understood only when applying a quantitative assessment such as Life Cycle Assessment (LCA). This was done in this study, by considering a selection of TRIZ strategies and collecting their pros and cons about environmental sustainability by applying LCA. To do this, the discussion of each strategy was supported by exemplary case studies about Comparative LCA, collected from the scientific literature. The intent of the authors is not to bring experimental evidence, but to provide a further and preliminary judging method to select the TRIZ strategies. In this way, problem-solvers can also base their choice on environmental sustainability.
Keywords: Eco-design | Life Cycle Assessment (LCA) | TRIZ
Abstract: Since every structure in the human body can vary, customization is important to choose the most appropriate medical option according to the patient. Total knee arthroplasty (TKA) is a surgical procedure for the knee replacement that has a high rate of patient's dissatisfaction. Indeed, conventional prostheses are based on anthropometric data that accommodate common knees. However, mismatch can occur due to anatomical variations among the individuals. Thanks to the advances in imaging techniques and 3D modeling, it is possible to create customized knee implants starting from medical images. In this context, the present research proposes a methodology to design a customized knee implant taking into account clinical (e.g., prosthesis alignment and surgical cuts) and technical parameters (e.g., materials) that have a direct impact on TKA performance and patient's satisfaction. Changing these parameters, different scenarios have been modeled and simulated to understand the most suitable combination. Finite element analysis (FEA) has been employed to simulate and compare the proposed customized models, changing the different clinical and technical parameters. Stress induced by different combinations of the parameters has been evaluated to choose the optimal solution among the eight proposed scenarios. The optimum is reached with a physiological alignment, with six femoral facets and the ultra-high molecular weight polyethylene (UHMWPE) tibial insert. The implant design maintains the natural joint line and allows preserving more bone. The material is the parameter that mostly influences the stress distribution.
Keywords: computer aided design | computer aided engineering | customized knee implant | femoral component optimization | finite element analysis | knowledge engineering | patient-specific knee prosthesis | total knee arthroplasty | virtual prototyping
Abstract: Obstructive sleep apnoea (OSA) is a disorder characterised by complete or partial occlusion of the upper airway during sleep. Muscles relax during sleeping and collapse into the airway, closing the throat and prohibiting air flowing into the lungs. Different solutions have been adopted to manage the pathology to improve the life quality of affected patients. Mandibular advancement devices (MADs) are proven to be a compliant and successful therapy in the forward repositioning of the mandible to increase the upper airway volume. However, this method has some long-term adverse events that may affect the teeth and periodontal ligaments. This paper presents a finite element model to evaluate the MADs effects (displacement and stress) on teeth and periodontal ligaments, by varying the design, the point of application of the force and the material. The modelled bodies have been reconstructed through a Reverse Engineering approach and computer-aided design tools starting from tomographic images of anatomic bodies and from laser scans of a physical MAD. The results suggest that a central connection mechanism could affect mostly the anterior teeth. In contrast, a lateral connection mechanism provides a more uniform distribution of the load on teeth.
Keywords: Digital dentistry | Finite element method | Mandibular advancement device | Obstructive sleep apnea syndrome | Periodontal ligament
Abstract: Obstructive sleep apnoea syndrome is characterized by an obstruction in the upper airway due to the pharyngeal collapse during sleep. Mandibular advancement devices have gained success and large popularity as a non-invasive treatment for OSAS. Nevertheless, the effects of mandibular advancement devices were poorly investigated in literature. To this aim the paper proposes a procedure to achieve a numerical simulation model useful to assess the stress/strain distribution on the temporomandibular joint and periodontal ligaments caused by the mandibular advancement. The findings suggest that the mandibular roto-translation induced by the MAD provoke high stress on the molars and premolar teeth.
Keywords: Computer aided design | Finite element method | Mandibular advancement device | Periodontal ligaments | Temporomandibular joint
Abstract: Obstructive sleep apnea syndrome (OSAS) is a sleep disorder that causes pauses in breathing or periods of shallow breathing during sleep. Mandibular advancement devices (MADs) represent a non-invasive treatment for OSAS that has had the highest development in recent years. Nevertheless, literature has not primarily investigated the effects of mandibular advancement. This paper presents a finite element method numerical simulation model for evaluating the stress/strain distribution on the temporomandibular joint (TMJ) and periodontal ligaments caused by advancement devices used for the treatment of OSAS. Results highlight that the mandible lift phase generates significant stress values on TMJ, which cannot be neglected for extended usage of MADs. Furthermore, mandible molar teeth are more loaded than incisor ones.
Keywords: Computer-Aided Design | Finite element method | Mandibular advancement device | Obstructive Sleep Apnea Syndrome | Virtual prototyping
Abstract: AIM: The purpose of this study is to compare the stress effects developed on the periodontal ligaments and teeth by three different types of mandibular advancement devices (MADs) using a finite element method (FEM) analysis. Introduction: Obstructive sleep apnea (OSA) is a disease with a high prevalence and, in recent years, the use of MADs as an alternative or support treatment to the continuous positive airway pressure (CPAP) has spread. Their use finds relative contraindications in the case of partial edentulism and severe periodontal disease. Given the widespread of periodontal problems, it is essential to know the effects that these devices cause on the periodontal ligament of the teeth. Materials and methods: Starting from the computed tomography (CT) scan of a patient’s skull, 3D reconstructions of the maxilla and mandible were implemented. Three different MADs were prepared for the patient, then 3D scanned, and lastly, coupled with the 3D models of the jaws. The devices have two different mechanics: One has a front reverse connecting rod (Orthoapnea™), and two have lateral propulsion (Somnodent™ and Herbst™). A FEM analysis was performed to calculate the stress applied on periodontal ligaments, on every single tooth and the displacement vectors that are generated by applying an advancement force on the mandible. Results: Herbst™ and Somnodent™ devices present very similar stress values, mainly concentrated on lateral teeth, but in general, the forces are very mild and distributed. The maximum stresses values are 3.27 kPa on periodontal ligaments and 287 kPa on teeth for Somnodent™ and 3.56 kPa on periodontal ligaments and 302 kPa on teeth for Herbst™. Orthoapnea™ has, instead, higher and concentrated stress values, especially in the anterior maxillary and mandibular area with 4.26 kPa and 600 kPa as maximum stress values, respectively, on periodontal ligaments and teeth. Conclusions: From the results, it is concluded that devices with a bilateral mechanism generate less and more distributed stress than an anterior connecting rod mechanism. Therefore, they may be advisable to patients with compromised periodontal conditions in the anterior area.
Keywords: Dental materials | Finite element method | Mandibular advancement device | Obstructive sleep apnea | Orthodontics
Abstract: Background: Sleep-Related Breathing Disorders are characterized by repeated episodes of complete or partial obstruction of the upper airway during sleep. Mandibular advancement devices represent a non-invasive treatment in reducing the number of respiratory events and in decreasing symptoms. The advancement extent of these devices is responsible for the mandibular roto-translation and its effects on the temporomandibular joint. Methods: This study defined a systematic method to assess the mandible roto translation that is caused by MADs according to a scan-to-CAD approach. Starting from a closed mouth position and simulating the oral appliance at different settings it was possible to define a local reference system that is useful for the evaluation of the mandibular roto-translation. This latter was then applied to evaluate the movements of the condyle and the mandibular dental arch. Results: MAD1 resulted in a reduced mouth opening and protrusion, while MAD2 enabled a higher degree of motion of the mandible useful for patients who need an important protrusion. Conclusions: The two devices present different dynamics. Results that are achievable employing this method can be directly used by practitioners in comparing MADs, as well as by researchers in evaluating MADs effects.
Keywords: Computer-aided design | Digital dentistry | Digital workflow | Mandibular advancement device | Obstructive sleep apnea syndrome
Abstract: A change in the current waste management practices is needed to improve the reuse and recycling rates and limit the increasing environmental impacts (EI) on the environment. The construction sector is one of the major contributors to the global EI, regarding energy consumption, emissions released into the atmosphere and extracted natural resources. In this context, the reuse of waste and scraps from other sectors/production chains (i.e. fibers from end of life tires – ELT) in road pavements potentially represents a best practice. This study presents a comparative life cycle assessment (LCA) among three different typologies of hot mix asphalt mixtures (HMA): standard, cellulose-reinforced and ELT fiber-reinforced. The study focuses on the environmental analysis of the realization and maintenance of 1 m2 of HMA mixtures for a motorway road, during a time lapse of 30 years. The life cycle inventory includes primary data, collected from different industrial companies and from laboratory test, secondary data, derived from the GaBi professional database 2016. The service lives of the different typologies of HMA have been evaluated through a laboratory study and a full-scale application in a trial section located in an important Italian motorway. The porous asphalt mixture containing ELT fibers showed about 70% increase in the fatigue resistance with respect to the porous asphalt mixture containing cellulose fibers. The environmental impacts have been quantified in terms of Cumulative Energy Demand (CED), Global Warming Potential (GWP), and ReCiPe midpoint and endpoint indicators. The obtained results show that raw materials (particularly bitumen) are the most impactful flows for all the three considered mixtures and for all the impact categories. Also the transportation phases contribute with relevant impacts, while energy flows consumed during the HMA preparation and laying are almost negligible. Considering the CED, GWP and ReCiPe endpoint indicators, the ELT fiber-reinforced HMA resulted the best alternative (reduction of 25% in comparison with the standard HMA), followed by the cellulose-reinforced HMA (−10%), thanks to the higher service life. For some ReCiPe midpoint categories (Agricultural land occupation, Freshwater ecotoxicity, Freshwater eutrophication, Marine eutrophication and Terrestrial ecotoxicity), instead, the worst scenario is the cellulose HMA, due to the high contribution of the cellulose material.
Keywords: Cellulose fiber | End-of-life tires fiber | Hot mix asphalt mixtures | Life cycle assessment
Abstract: Simulation tools for liquid composite molding processes are a key to predict and solve manufacturing issues of composite materials. Numerical processes are commonly used to analyse and predict mould filling, considering also resin cure and exothermic reactions. These evaluations are usually performed through dedicated software tools that require highly specialized operators and purchasing costs. The present study relates to a multi-objective optimization approach for evaluating the effect of different process parameters of the resin transfer molding (RTM) process using a multi-purpose tool. Starting from a simple case, useful for analysing the effect of mesh type and size on the simulations, and then increasing the complexity of the models, virtual simulations have been validated through real tests. Afterward, this approach has been used for the optimization of the RTM process for the manufacturing of an automotive component. Gate positions, injection pressure and resin temperature have been optimized using finite-volume analysis with a multi-objective genetic algorithm. Finally, the parameters have been used in real experiments in order to validate the efficiency and the reliability of multi-purpose tool in simulating RTM processes.
Keywords: Multi-objective optimization | Process simulation | RTM | Virtual prototyping
Abstract: Nowadays, packaging represents around 35% of the total municipal solid waste yearly generated. This paper aims at analyzing a methodology to support the redesign of a sustainable packaging for the household appliances. The approach considers the environmental impacts related to geometrical parameters and materials. In particular, here the test case is focused on the packaging for kitchen hoods. Through the proposed method, based on the use of virtual prototyping tools, an eco-design approach has been identified to analyze the main environmental impacts. A packaging redesign has been performed to reduce waste and increase the use of the components from the perspective of the circular economy. This study has been performed in accordance with the international standards ISO 14040/14044, by using a Life Cycle Assessment (LCA) from Cradle to Gate. The integration with a CAD tool has been considered to redefine the packaging shape, materials, and internal composition, keeping the same standard requirements (performance, security, etc.). LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA). A comparison has been proposed between a traditional packaging for household appliances and a new solution which integrates an interior part in molded pulp. The results show the possibility to cut down the environmental impacts of approximately 15% by a redesign with a molded pulp interior and avoiding EPS structures.
Keywords: Molded pulp | Sustainable design | Sustainable packaging
Abstract: In this paper, an original approach for the virtual prototyping of composite pressure tanks is proposed. The main tests to be conducted for the homologation of the vehicle tank is the burst pressure, which is a quasi-static test. This method aims to reduce the finite element model development time by the integration between the computational software MATLAB and the FEA tool Abaqus. Since the dome shape has fundamental influence on the mechanical performances of the composite pressure vessel, the presented procedure allows the designer to quickly import the suitable dome geometry into Abaqus, without the need of going through CAD software. The first step of the method here reported is the definition of all the geometric and operational parameters necessary to the construction of the dome meridian profile. The second step is to enter those parameters in a MATLAB script, which is able to integrate the dome profile differential equation, to generate the whole tank profile and to import this profile into Abaqus. Once the geometry has been imported, a FE model of the high-pressure vessel can be built and virtual simulations can be performed. This approach could be implemented in a dome optimization process to find which dome meridian profile gives the best tank performances.
Keywords: Composite Vessels | Filament Winding | Virtual Prototyping
Abstract: Eco-design strategies aim to integrate environmental considerations into product design and development. Several regulations, directives and standards have been issued on this topic during last years. In particular, European Directive (2009/125/EC) establishes the eco-design requirements related to domestic and commercial kitchen appliances (e.g. cookers, hobs, grills). The present paper focuses on the virtual product eco-design of domestic induction heating cookers, which are becoming one of the leading cooking systems due to their advantages, e.g. energy efficiency, rapid heating, cleanliness, and user safety. The adoption of numerical analysis tools for the simulation of cooktops use phase, based on thermodynamic modelling, allows to provide useful information regarding the performance of cooking system at each phase of cooking. The paper provides a progress beyond the state-of-art on thermodynamic models for induction hob simulation considering interaction between the cooktop and the pot in the work environment. The goal of the paper is therefore to propose a methodology able to support designers in evaluating heating performances of induction cooking appliances, early in the design phases, through a virtual and multi-physical product model. Thermodynamic performances are determined by measuring several parameters and reproducing the energy consumption test by the mean of a virtual prototyping tool. Results highlight how the proposed model is adherent with the real tests following a specific standard in this sector with a maximum deviation of 3.2% considering the different cooking pot sizes.
Keywords: Design methodology | Eco-design strategies | Virtual Prototyping
Abstract: One of the commitments of the European community is to increase the share of energy produced from renewable sources in order to minimize costs and risks, or that the society has to bear to produce electricity, in addition to compliance with European pollutant gas (CO2, SO2, NOx and PM) objectives. An ever-increasing body of research aims to study the actual energy savings of buildings with systems of renewable energy production implemented with storage systems, evaluating the potential energy savings. To date, however, the analysis of the environmental impacts of the total life cycle was not taken into account. Thus, no assessment has been made whether the amount of energy saved (esaved) outweighs the energy needed for production, use and disposal (einvested). This study presents an approach for the analysis and evaluation of the energy flows, environmental impacts and cost of a new modular and integrated system of renewable electricity generation and intelligent electrochemical storage systems, that allows auto-production and self-consumption of electricity in residential buildings (smart grid). The results show that the total impact depends on the configuration chosen, from the consumption profile and the types of users. If the duration of use is short and the savings achieved are small, the expected benefits will not always be achieved, in terms of costs for the user and the environmental impact.
Keywords: Energy efficiency | Environmental impact | Self-consumption
Abstract: Nowadays, the increasing of global climate change and warming is leading governments, consumers, and firms towards a low-carbon economy. A lot of research shows that about 75% of the environmental impacts related to energy-related products is due to the use phase. Therefore, energy-related products, such as household appliances, are responsible for the consumption and depletion of natural resources. The eco-design of household appliances is a necessary approach to analyze and reduce the environmental impacts related to these products, considering materials, efficiency, and energy consumptions. In Europe, as well in China and America, the eco-design is becoming an Integrated Product Policy to support the Energy Labelling of several energy-related and consuming products. This paper deals with a design methodology to support the eco-design of cooking ovens by the simulation of the product performance. Two simulation cases have been analyzed: the energy consumption, which is provided by EU regulations No 66/2014 and No 65/2014 and the baking test. Even if regulations only provide the energy consumption test, the baking test is necessary to analyze the functional quality of the product. Therefore, two levels of simulations are necessary to complete the eco-design approach of cooking ovens. The results show that the proposed methodological approach can reduce the time-to-market and enhance the design optimization from the early design phases.
Keywords: CFD | Electric oven | Energy labelling | Gas oven | Heating ovens
Abstract: End-of-life vehicles (ELV)represent a relevant waste source in Europe, even if ELV recycling is a priority of the European Union waste legislation and Environment Action Programmes (EAPs). End-of-Life Tires (ELTs)constitute a relevant portion of ELV waste. Textile fibre, which is a relevant portion of the ELT material, is considered as a special waste (European Waste Catalogue – EWC code 19.12.08). The main problem related to textile fibre is its contamination with rubber which does not allow to obtain a pure product economically and qualitatively useable. The aim of this paper is to illustrate an innovative technology for ELT fibre's recycling, which allows to transform textile fibre into a useful secondary raw material for different applications. In particular, the use of ELT fibre as additive for bituminous conglomerates has been investigated. The different processes have been analysed from an environmental point of view, applying the Life Cycle Assessment methodology. It came up there is an impact reduction in case the ELT fibre is reused as additive for bituminous conglomerates, instead of disposing it (through incineration). Moreover, the financial and economic sustainability of the related technological process has been evaluated to check whether the process is sustainable in the long term. Starting from the results of the Life Cycle Assessment, economic performance indicators have been calculated, by applying the European Commission methodology for cost-benefit analysis. According to the present cost-benefit analysis, in the medium and long term the system is financially viable, and the high economic profitability makes the process economically sustainable. Furthermore, a sensitivity analysis as well as a risk assessment have been carried out in order to identify critical variables, evaluate risks and define risk mitigation measures. According to the sensitivity analysis performed, the project is not highly risky since even in the worst scenario the possible loss is moderate. Based on the results of this analysis, it can be concluded that this ELT fibre's recycling system can be replicated across Europe, conveniently fostered by national policies (such as subsidies, value added tax etc.).
Keywords: Circular economy | Cost-benefit analysis | End-of-life tyres | Second applications
Abstract: This paper aims to analyse and compare the environmental and technical performances of two domestic oven technologies (one powered by natural gas and one by electric energy) considering the Italian context, such as Italian social and food habits. These household appliances are subject to energy labelling and are the most diffused cooking systems along with hobs. This study was performed in accordance with the international standards ISO 14040/14044 and adopted the attributional LCA approach. The analysis is related to the functional unit “the baking of food, considering the Italian context and a lifetime of 10 years”. The analysis includes all phases of the life cycle except for maintenance and transport, which were considered negligible for this analysis. The materials and manufacturing phases necessary for the production of the two ovens were considered in the analysis, and the data were provided by the ovens’ manufacturers. The products’ use phase was considered through the measurement of resources (both natural gas and electric energy) consumed during the cooking simulation by experimental tests that simulated a heating cycle of a standard load represented by a brick. The product end-of-life phase was considered in accordance with the current regulations and statistical data in this sector. The EcoInvent database was used as a reference for background data. The ReCiPe life cycle impact assessment method was used for the assessment of the environmental impact categories. This study shows the dominance, in terms of the environmental impact, of the electric oven with respect to the gas oven in every indicator considered in the analysis. In particular, the electric oven accounts has an approx. 3 times greater impact than the gas oven on the climate change, freshwater ecotoxicity and marine ecotoxicity impact categories, while for the ozone depletion, fossil depletion metal depletion and natural land transformation categories, the results are similar, with a slight dominance of the electric oven (approx. 2–5%). This finding is related to the use phase and results from the different energy carriers used and the time required for cooking in the two cases. Indeed, the nature of the energy carrier for the electric oven and the time required for cooking (based on the energy efficiency test) is longer compared to those of the gas oven. This result, which is clearly in favour of the gas oven in the Italian context, leads to the conclusion that the main contribution to the environmental load of the electric oven is the Italian electricity grid mix, which is mainly based on non-renewable sources. Therefore, this analysis depends on the geographic area of interest, and the results can significantly change if different contexts are analysed.
Keywords: Cooking appliances | Electric oven | Environmental impacts | Gas oven | LCA | LCI
Abstract: Nowadays, design processes demand agile and flexible tools and methods to meet market needs. Virtual prototyping techniques are widespread in design strategies and practices, because these technologies reduce the project development lead-time and cost related to physical prototyping. The aim of this paper is the study and application of an approach for the modeling, simulation and geometrical optimization of fans for gas turbine air supply. Fan is a type of machine used to move a fluid, typically a gas such as air, exploiting the kinetic energy of a rotating impeller. It consists mainly of two components: housing and rotor. There is extensive literature on the design and optimization of industrial fan, but main works refer to a small or medium standardized fan, where it is possible to study many parameters and perform many experimental tests. The paper presents an approach for the efficiency optimization of large and customizable centrifugal industrial blowers for gas turbine air supply. The design variables investigated in this study were the blades quantity, orientation and shape. The proposed optimization method has been used for the design optimization of a blower for gas turbine power plant. The response surfaces allowed defining correlation between design variables and efficiency. The optimized design was 18 % more efficient than the original one.
Keywords: Computer aided engineering | Genetic algorithms | Geometric optimization | Industrial fan | Response surface methodology | Virtual prototyping
Abstract: Sheet metal forming of tribologically difficult materials (e.g. stainless steel) or forming in tribologically difficult conditions (e.g. ironing, punching, deep drawing) require the use of environmentally hazardous lubricants, such as chlorinated paraffin oils in order to avoid galling. The present paper describes an environmental and economic evaluation of two alternative sheet metal stamping processes. The forming of a sheet metal component for boiler burners has been taken as case study for the analyses. In particular, two different lubricants (standard mineral versus polymer matrix-based lubricant) have been tested and compared. However, the differences among the two processes involves not only the lubrication phase, but also the electric energy consumption during the stamping and degreasing, as well as the typology of solvent (perchloroethylene versus water). Results obtained with the economic analysis show that the use of the alternative lubricant leads to a 16% reduction of the total manufacturing cost, mainly due to the optimization of the degreasing. Concerning environmental results, instead, no relevant differences can be observed for almost all the considered impact categories (ReCiPe midpoint and endpoint), since the optimized phases are not the most critical ones.
Keywords: Cost estimation | Degreasing | Life cycle assessment | Lubricants | Sheet metal stamping
Abstract: The wine production constitutes an important sector for the Italian economy. Most of the wine producers are associated in local consortiums, which include small family companies involved in the production of similar products. This study aims to investigate the implementation of circular economy opportunities in the wine production chain. In particular, the reuse of glass bottles in the Piceno wine consortium (central Italy) has been analyzed to quantify the potential environmental benefits. The standard Life Cycle Assessment (LCA) methodology has been used to compare the standard scenario (recycle of glass) against the circular scenario (cleaning and reuse of bottles within the local consortium). Results demonstrate that the reuse of glass bottles leads to relevant benefits in all the considered impact categories (ReCiPe Midpoint method). The avoided use of virgin glass offsets the additional resources (e.g. energy) consumed during the cleaning of used bottles.
Keywords: Circular economy | LCA | Reuse | Wine bottle
Abstract: Lightweight engineering is a current topic in mechanical industry. The mass reduction is a common design objective to reduce product cost and environmental impacts. Virtual prototyping tools are widely applied to study new lightened solutions and check the compliance with regulations and standards. However, an integrated approach, involving simulations and life-cycle analysis, is necessary to support design optimization and decision-making. The scope of this study concerns the definition of an Ecodesign approach to support the lightweight engineering of cast iron parts through the redesign of the product shape. In particular, this paper deals with the optimization of a ductile cast iron manhole. The test case shows a redesign method which considers structural analysis with environmental impacts. The structural analysis has been evaluated using a finite element method tool. In particular, the simulation results have been compared and validated with physical tests. The environmental analysis is based on the methodology provided by the standardized ISO 14040:2006 and ISO 14044:2006. The proposed LCA study considers the phases of manufacturing and transport related to one ductile iron product. The described manufacturing phase is related to a Chinese foundry which produces roughly 12,000 tons of ductile cast-iron castings. The results show the possibility to achieve about 20% of mass reduction for one casting. Considering such mass decreasing, the related reduction in terms of carbon emission is about 7%. Summarizing, this paper shows a design approach to integrate the structural improvements with the reduction of the environmental impacts related to a lighter weight casting.
Keywords: Cast ductile iron | Design optimization | Life-cycle assessment | Lightweight engineering | Manhole | Virtual prototyping
Abstract: Nowadays, several consumer goods are sold with an energy label which provides energy information about consumption, efficiency, noise, and performance. These labels are regulated by local energy policy and governments. Because of this, customers are becoming increasingly aware about the energy efficiency and consumption of products such as household appliances. In Europe, several household appliances are involved in the European Energy Labelling Directive. Therefore, the manufacturers are paying attention to Ecodesign tools and methods to support the development of eco-innovation and sustainable products. In this context, the paper proposes a design methodology to support the development of efficient cooker hoods using an approach based on a constraints satisfaction problem model. The scope of the proposed research is to reduce the time-to-market of household appliances considering the energy efficiency optimization from the early design phases to the embodiment design. A Case Based Reasoning is also implemented to define a pre-configured model of product before the CSP optimization. The CSP model has been developed as an analytical system, which can predict the energy label achieved by a final prototype of a cooker hood. The interaction of such tools can fill the gap between traditional design methods and eco-innovation approaches, in order to support the designer in the decision-making activity. The test case shows a cooker hoods optimization based on a CSP tool, developed using a programming framework based on Gecode platform.
Keywords: Case-based reasoning | Constraints satisfaction problem | Design optimization | Ecodesign | Energy label | Virtual prototyping
Abstract: The paper aims to analyse and compare the environmental performances of the most widely used cooking appliances (the induction hob vs. the gas hob) considering a typical Italian scenario in terms of food, family and social habits. Cooking appliances are subject to energy labelling, and they represent the most impacting system inside households. This study was performed in accordance with the international standard, ISO 14040/14044, by using an attributional Life Cycle Assessment (aLCA). The functional unit is defined as the “preparation of a complete homemade meal (lunch) for 20 years consumed by a four-member family in Italy”. This study shows the dominance, in terms of environmental impact, of the induction hob with respect to the gas hob for most of the selected midpoint indicators. In particular, the induction hob accounts for more than 60% of the climate change and ozone depletion impact categories and more than 70% of the metal depletion category. The same trend is also noticed in the end-point categories (human health, ecosystem qualities and resources) and for the Cumulative Energy Demand indicator. Based on the experimental evidence of this work, the use phase is the most important due to the different energy carriers (natural gas vs. electrical energy). This finding is the result of the nature of the energy carrier (the electricity grid mix) in the Italian scenario, which is mainly based on non-renewable sources. In addition, concerning the production phase of the two appliances, the induction hob shows a relevant dominance in terms of the human toxicity and metal depletion impact categories due to the use of rare metals and coppers in the cooktop part manufacturing. The outcomes obtained from this study may be used by household manufacturers to improve the performance and design solutions of their appliances as well as by end users in their selection of cooking technologies.
Keywords: Cooking appliances | Energy consumption | Environmental impact assessment | Food cooking | Life cycle assessment
Abstract: The management of end-of-life tyres (ELTs) is regulated by several national and international legislations aiming to promote the recovery of materials and energy from this waste. The three main materials used in tyres are considered: rubber (main product), which is currently reused in other closed-loop applications; steel, which is used for the production of virgin materials; and textile fibres (approximately 10% by weight of ELTs), which are mainly incinerated for energy recovery (open-loop scenario). This study aims to propose and validate a new closed-loop scenario for textile fibres based on material reuse for bituminous conglomerates. The final objective is to verify the technical, environmental, financial, and economic feasibility of the proposed treatment process and reuse scenario. After characterization of the textile material, which is required to determine the technological feasibility, a specific process has been developed to clean, compact, and prepare the fibres for subsequent reuse. A life cycle assessment (LCA) has been carried out to quantify the environmental benefits of reusing the fibres. Finally, a cost benefit analysis based on the LCA results was conducted to establish the long-term financial and economic sustainability. From a technological point of view, the tyre textile fibres could be a promising substitute to the reinforcement cellulose commonly used in asphalts as long as the fibres are properly prepared (compaction and pellet production) for application in the standard bituminous conglomerate production process. From an environmental point of view, relevant benefits in terms of global warming potential and acidification potential reduction were observed in comparison with the standard incineration for energy recovery (respectively −86% and −45%). Moreover, the proposed scenario can be considered as financially viable in the medium to long term (cumulative generated cash flow is positive after the 5th year) and economically sustainable (expected net present value of more than €3,000,000 and economic rate of return of approximately 30%). Finally, the sensitivity and risk analyses show that no specific issues are foreseen for the future implementation in real industrial applications.
Keywords: Circular economy | Cost–benefit analysis | End-of-life tyres | Feasibility evaluation | Reuse scenario
Abstract: In industrialized countries, packaging waste is one of the major issues to deal with, representing around 35% of the total municipal solid waste yearly generated. Therefore, an analysis and an environmental assessment of packaging systems are necessary. This paper aims at analyzing and comparing the environmental performances of two different packaging for domestic hoods. It shows how, through a packaging redesign, it is possible to obtain a reduction of the environmental impacts. This study has been performed in accordance with the international standards ISO 14040/14044, by using attributional Life Cycle Assessment (LCA) from Cradle to Gate. The functional unit has been defined as the packaging of a single household hood. Primary data have been provided by a household hood manufacturer, while secondary data have been obtained from the Ecoinvent database. LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA) stage. The results have shown the new packaging model being able to cut down the environmental impacts of approximately 30%. These outcomes may be used by household manufacturers to improve performances and design solutions of their different packaging.
Abstract: End of Life Tires (ELT) constitute a major portion of End of life Vehicles (ELV). The treatment process of ELTs is primarily aimed at recovering steel and rubber, which jointly represent the main portion of the ELT material and are currently applied in different sectors. During the treatment of ELTs, other sub-products are generated in significant quantities (about 10-15% in weight), as textile fibers that currently are landfilled or used for energy recovery. The aim of this study is a comparative evaluation of the environmental impacts related to three different end of life scenarios for the textile fibers. In addition to landfilling and incineration, this study considers the possibility to reuse textile fibers as reinforcement in bituminous conglomerates. Results obtained through the Life Cycle Assessment study confirms that the reuse scenario leads to a relevant reduction of impacts in terms of Global Warming Potential. However, by considering other environmental metrics the reuse scenario is not always the less impactful one.
Keywords: End of life tires | environmental impact | fiber material | second life application
Abstract: The paper defines a framework called virtual eco-design aiming to support designers and engineers in the development of sustainable energy-related products. Virtual prototyping is used to perform energy consumption tests according with ecodesign and energy label regulations. The goal is to build a knowledge-based repository in which virtual tests are stored and classified to create eco-knowledge. Induction hob has been analysed to verify the applicability of the approach and the integration in a traditional product development process. Results highlight how the proposed methodology increases company eco-knowledge providing a tangible support in the definition of energy-label compliant products.
Keywords: eco-design | eco-knowledge | energy labelling | energy-related products | virtual prototyping
Abstract: Even if specific directives have been issued to regulate the management of End of Life Tires (ELT), several materials are still not properly recovered. This is the case of textile fibers obtained from the treatment of ELTs. This study aims to investigate and quantify the environmental impacts related to the reuse of tires textile fibers as second-life material for the preparation of plastic compounds. The Life Cycle Assessment methodology has been used to compare the baseline scenarios (landfilling and incineration) with the reuse scenarios. Results obtained confirms that reuse scenarios are generally more environmental sustainable than the currently implemented strategies.
Keywords: End of life tires | Life Cycle Assessment | Material reuse | Textile fiber
Abstract: In Europe, kitchen hoods currently come with an energy label showing their energy efficiency class and other information regarding the energy consumption and noise level, as established by the European Energy Labelling Directive. Because of recent regulations, designs of cooker hoods must consider new issues, such as the evaluation of the energy efficiency, analysis of the energy consumption, and product lifecycle impact. Therefore, the development of eco-driven products requires Ecodesign tools to support eco-innovation and related sustainability improvements. The scope of the proposed research is to define a method and an agile and affordable platform tool that can support designers in the early estimation of product energy performance, including the calculation of energy efficiency indexes. The approach also considers the use of genetic algorithm methods to optimize the product configuration in terms of energy efficiency. The research context concerns large and small productions of kitchen hoods. The paper describes the methodological approach within the developed tool. The results show a good correlation between real efficiency values and calculated ones. A validation activity has been described, and a test case shows how to apply the proposed approach for the design of a new efficient product with an A-class Energy Efficiency Index.
Keywords: Ecodesign | Energy label | Knowledge-based engineering | Optimization | Product configuration | Virtual prototyping
Abstract: With increased acknowledgment of global climate change and warming, governments, consumers, and firms are responding collectively to create today's low-carbon economy. The eco-design of products is a crucial factor in the Community strategy on Integrated Product Policy. As a preventive approach, designed to optimize the environmental performance of products, while maintaining their functional qualities, it provides genuine new opportunities for manufacturers, consumers and society as a whole. This article presents an approach to support the designers during the energy labeling phases of products. The study starts with an analysis of the Eco-design regulations and proposes the virtualization of such tests. A case study on the application of the proposed method is described. The study results show that, the use of numerical simulations not only for product design but also during the testing and labeling phase, allowing a significant reduction in time to market and provides the company competition and economic, energy, and time savings.
Keywords: Design for enviroment | Design optimization | Eco-design | Energy labelling | Energy-related products | Virtual Prototyping
Abstract: During recent years the European Ecodesign Directive has introduced big changes in the design methodology of several energy-using products including consumer goods such as ovens, washing machines and kitchen hoods. Additionally, the introduction of the Energy Labelling Directive pushes manufacturers to implement new energy-saving features in many energy-related products sold in Europe. As a consequence, several companies have been encouraging the improvement of their energy using products paying attention to the related selling cost. Eco-driven products require eco-design tools to support the eco-innovation and the related sustainability improvement. The main scope of the proposed re-search is the reduction of the time-to-market for the energy-using products such as kitchen hoods. In this context, the paper aims to provide an approach to support a pre-evaluation of the energy labeling related to kitchen hoods. A prototypical software tool has been developed in order to simulate the energy performance of new kitchen hood configurations in term of energy efficiency. The approach also considers the introduction of virtual experiments in order to calculate the performance of virtual modules. This tool makes the product-engineer more aware in the decision-making about the energy-saving. As a test case, different product configurations have been compared analyzing the energy labelling and the overall energy performance.
Keywords: Ecodesign | Energy efficiency labeling | KBE | Kitchen hoods | Virtual prototyping
Abstract: The scope of the present research is the reduction of cost and time related to the design, prototyping and testing of a Li-ion battery pack, which is used in commercial full electric vehicles using tools for rapid product configuration and simulation. This objective is particularly important for small companies that produce many different batteries in small lots. To develop the product design support system, a preliminary study was necessary. A 3D model was analyzed to simulate real thermal behavior, reproducing a real electric load using a standard ECE-15 cycle. Experimental tests have been conducted on the vehicle and battery to validate the model. An analytical thermal model was developed to evaluate the heat generated by electrochemical reactions inside a Li-ion cell. The outcome of this analytical model was used as the boundary condition in the CFD simulation of the battery model to evaluate the cooling behavior. The rules and results deduced from these studies have allowed the implementation of an easy-to-use knowledge-based configuration tool that supports the designer in the definition of the layout of the battery pack to save time and evaluate costs. As a test case, the battery for an urban freight vehicle was designed using the proposed approach. The achieved results show good performance and robustness of the simplified approach in terms of temperature distribution evaluation and design process efficiency.
Keywords: Battery configuration | Battery cooling | Electric vehicle | Li-ion batteries | Virtual prototyping
Abstract: The market of the hybrid electric vehicles has been increasing for several years. Different commercial EV and PHEV solutions are available for passenger cars and light vehicles for freight deliveries. However, the market of heavy trucks still regards traditional ICE vehicles powered by diesel oil fuel. The recent interest for electric solutions have been pushing the development of the hybrid solutions, but only micro-hybrid systems are considered feasible for heavy truck applications. The proposed research aims to define a methodological approach with a virtual model in order to simulate the behavior of a hybrid heavy truck. The scope of this research is the feasibility analysis of a retrofit hybrid heavy truck. A real driving cycle has been used in order to obtain reliable results in terms of cost, energy consumption and gas emission. The layout of the hybrid system has been proposed as well as the sizing of battery and electric motor. A commercial tool has been used for the vehicle modelling and simulation. As a test case, an 18-ton truck has been analyzed with a 10-liter diesel engine. Firstly, the simulation of the diesel truck has been reproduced considering the real driving cycle data. Secondly, the simulation activity has been focused on the evaluation of the hybrid system behavior by investigating different battery sizes with the same boundary conditions related to the real driving cycle.
Abstract: Nowadays in many industrial applications, i.e. electrical household appliances, it is necessary to have a robust and safe control for some variables involved in the analysis of the performances of different products. In addition, the recent ecodesign directives require products increasingly eco-friendly and eco-efficient, preserving high-performance but a low power consumption. For these reasons, the physical prototypes of products require many expensive and complex tests in term of time, resources and qualified personnel involved. To overcome these limitations, the proposed approach is focused on the use of virtual prototyping tools, which support and reduce the expensive physical experiments. The main objective of this paper is the development, implementation and testing of an innovative methodology, which could be an improvement for the sustainable design of induction hobs. Induction heating applied to the domestic cooking has significantly evolved since the first cooking hobs appeared. Different issues such as maximum power available for heating a pot, dimensional compactness of the hobs, or inverter electronics efficiency have achieved a great development. The proposed methodology provides the development of a multi-physic model which is able to estimate the efficiency of the induction hobs starting from the design data of the project. In particular, the multi-physic model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation, starting from electrical values such as voltage, current and frequency, is able to simulate the eddy current induced in the bottom of the pot, and resistance leads to the Joulean heating of the material. The thermal simulation is able to measure the energy consumption during the operational phase and the temperature reached by the materials. Therefore, the thermal power obtained by the Joulean heating is, at the same time, the output of the electromagnetic simulation and the input of the thermal one. The proposed model can be applied to design product and simulate the performance considering different operating conditions such as different types of cookers, different coils and different materials. Through the use of virtual prototyping tools is possible to control the heat flux on the whole system (stove, pot, water), and to evaluate the energy efficiency during the operational phase. The proposed tool makes the productengineer more aware about decision-making strategies in order to achieve an energy saving, calculated over the whole life cycle.
Abstract: This study presents an approach based on Design of Experiment (DoE) technique for the optimization of an energy recovery ventilator (ERV). This system is one of the efficient ways to enhance the thermo-hygrometric comfort without increase excessively the thermal load in domestic kitchen. However, there is a major concern, which energy recovery cannot trade off ERV's fan power consumption. The goal of this study is to obtain the information about the relation between factors and response in an empirical way. This approach integrates three different levels of analysis: the virtual prototyping, Design of Experiment (DoE) and rapid prototyping. The virtual analysis allows to define the principal parameterization of a simplified model and to simulate the performance of each configuration at working condition. The proposed approach investigates the effect of the defined parameters and noise factor on the experimental results. In particular, the applied method for DoE analysis is based on virtual experiments in according to the necessity to reduce time and costs during the early design phase. The optimum parameters configuration, which is defined by the previous step, is useful to define the geometry and the working condition of a reliable virtual model. The final level is the realization of a 3D ERV with a rapid prototyping printer. The obtained component is now evaluable at the test bench to investigate the air flow rate and the electric power consumption.
Keywords: Design of Experiments | Energy Recovery Ventilator | Rapid Prototyping | Virtual Prototyping
Abstract: End-of-Life Tires (ELT) are one of the main source of waste in End of Life Vehicles (ELVs). Textile fibers represent about 10% in weight of the ELT and every year, in Europe, about 320,000 tons of dirty fibrous material must be disposed as special waste. Studies show that the fibrous material can be used in second life applications, reducing the environmental impacts of tires disposal, but none of these researches quantitatively evaluate the achievable benefits. This study presents a comparative evaluation of the environmental impacts of the tires considering different scenarios for the end of life of the textile fibers material.
Keywords: End of life tires | environmental impact | second application
Abstract: The actual growing world energy demand is generating strong attention to the energy efficiency and to the environmental sustainability. The residential sector is one of the most energy-intensive reaching about 25% of global energy consumption. Furthermore, it is difficult to understand the real energy use in residential buildings suggesting the development of methodologies and tools to monitor and assess their energy performances. Such an analysis requires defining all the actors, their interaction rules and the intelligent management of a large amount of data. In addition to this, the energy performances of the home environment are closely related to the specific case under investigation, in fact it imposes the analysis of the particular application scenario and the target users to extract parameters able to describe the building behavior. They are related to the technological characteristics of the systems, to the external environment (e.g. external temperature, solar irradiation, etc.) and to the user needs and habits. It introduces some complexities, because many of these data are difficult to find and to predict. Another cause of complexity was introduced by the information and communication technologies (ICT) that creates new relationship between home devices fostering the spread of smart systems. In this scenario, simulation tools have been developed to grasp the real energy performance of a building, but they require a high level of detail for the input data which are often difficult to find. Otherwise, other tools are built for much simplified simulations and typically addressed to inexperienced users neglecting the real complexities of the system. For this reason, the paper presents a new design approach that aims to develop knowledge-based tools with architecture able to simulate the real behavior of the building considering all the actors and their interaction rules, but at the same time containing the features that allow them to be used in fast simulations or by inexperienced users. One of the focuses is the development of an intelligent user interface that, when requested, is able to automate and simplify data entry process. It is particularly useful when the user does not know the necessary input data for the simulation, e.g. energy consumption profiles, detailed features of the building, etc. All the steps of the proposed approach are described in the paper. In the first section is highlighted how the key parameters have been found and how they are organized as creating a knowledge base, while in the second section is shown the operation of the smart user interface and of the simulation tool. The results demonstrate that the proposed knowledge-based approach generates real benefits by simplifying and speeding up the data entry. Furthermore, the study shows how the smart user interface allows performing complex simulations also to novice users.
Abstract: This study presents an approach for the evaluation of the energy efficiency and environmental impacts of a new modular and integrated system of renewable electricity generation and intelligent electrochemical storage systems, that allows auto-production and self-consumption of electricity in residential buildings. Homes with installed these renewable energy production systems are compared from an environmental and economic point of view, to the traditional ones, that draw electricity energy directly from the grid. In this context different scenarios are considered together with different configurations of power production and storage capacity, in order to compare different use cases. To this end, the environmental impact along all the life cycle of these systems is examined with the help of the SimaPro software simulation tool and quantitatively assessed.
Keywords: Energy efficiency | Environmental impact | Self-consumpion
Abstract: In a scenario of small and customized production of electric vehicle, it is important to set methods and tools to evaluate the Li-Ion cells heat source in EV battery. The main problem of the new lithium batteries is represented by the need to keep the battery packs at uniform and constant temperatures and avoid peaks of temperatures which cause degradation of performance and safety problem. The main issue concerns the characterization of a thermal model to calculate the heat generated by electrochemical reactions in a single battery cell. In order to achieve this objective, electrical tests have been conducted to obtain the parameters such as voltage curves, open circuit voltage, and capacity for different type of Li-Ion cells and different rate of current in charge and discharge. During experiments, the use of an IR camera allows to acquire real temperature data under working conditions. These tests concern one cell per time, analyzed in natural convection condition at constant external temperature. The heat generation is evaluated solving the analytical thermal formula which depends on the current rate. The approach has been validated comparing the calculated temperature values with experimental data. The proposed methodology allows to determine the heat generated and temperature for different working condition.
Keywords: heat exchange | lithium battery | modeling
Abstract: Generally a part of electric vehicle diffusion is still based on marketing of cars and vans suitable for specific use like work vehicles. A flexible design methodology is required to support rapid prototyping and product customization in the market of tailored EV/PHEV. The research focuses the cooling simulation for a PHEV Li-Ion battery. The thermal analysis is based on the physical parameters of the single cell and on the experimental data. The proposed methodology concerns firstly an analytical approach which evaluates the average heat generated by a single cell during working condition. Then the proposed virtual prototyping analysis has been divided into two levels: the thermal simulation of one cell, and the CFD analysis of a battery module. This workflow has been applied to support the design of a battery pack for a prototypal ecological hybrid vehicle. That test case vehicle is a small van, used for the curbside collection, which has in parallel an internal combustion engine and an electric motor supplied by a LFP battery with small cylindrical cells. The analysis concerns one of the four module which constitutes the whole battery pack. The virtual model has been parameterized and the behavior of air cooling system has been evaluated through virtual tools.
Keywords: cooling | lithium battery | modeling | PHEV | simulation
Abstract: Nowadays, electric vehicles fill a relevant car market share. The Li-Ion batteries currently represent the best solution in term of environmental impact and performance. Thermal management for Li-Ion batteries is a very interesting topic, since high temperatures accelerate degradation rate of a cell and compromise its safety level. The battery thermal modeling can be quite challenging. The proposed approach describes a methodology to simulate different thermal management algorithms in order to obtain an uniform temperature distribution in a Li-Ion battery pack. A test case has been developed where the application of an thermal algorithm has been analyzed through CFD simulations.
Keywords: CFD | Hybrid electric vehicle | Li-ion battery | Simulation | Thermal management | Virtual prototyping
Abstract: An important issue in the mechanical industry is the reduction of the time to market, in order to meet quickly the customer needs. This goal is very important for SMEs that produce small lots of customized products. In the context of greenhouse gas emissions reduction, vehicles powered by electric motors seem to be the most suitable alternative to the traditional internal combustion engine vehicles. The market of customized electric vehicles is a niche market suitable for SMEs. Nowadays, the energy storage system of an electric vehicle powertrain consists of several Li-ion cells arranged in a container called battery pack. Particularly, the battery unit is considered as the most critical component in electric vehicle, because it impacts on performance and life cycle cost. Currently, the design of a battery pack mostly depends on the related market size. A longer design time is expected in the case of a large scale production. While a small customized production requires more agility and velocity in the design process. The proposed research focuses on a design methodology to support the designer in the evaluation of the battery thermal behavior. This work has been applied in the context of a customized small production. As test case, an urban electric light commercial vehicle has been analyzed. The designed battery layout has been evaluated and simulated using virtual prototyping tools. A cooling configuration has been analyzed and then prototyped in a physical vehicle. The virtual thermal behavior of a Li-ion battery has been validated at the test bench. The real operational conditions have been analyzed reproducing several ECE-15 driving cycles and many acceleration runs at different load values. Thermocouples have measured the temperature values during the physical experiments, in order to validate the analytical thermal profile evaluated with the proposed design approach.
Abstract: Nowadays, design processes need of agile and flexible tools and methods to meet market needs and Ecodesign directive in the industry of household appliances. Virtual prototyping techniques are widespread in design processes and practices, in order to reduce the project development lead-time and the cost related to any real physical prototyping. The aim of this paper is the study of a generic modular approach to support the optimization process of simple mechanical parts using virtual prototyping tools and a multi-DOE solving analysis based on virtual experiments. The target is to increase flexibility in design phases. The research context regards the optimization of a blower for cooker hood applications, in order to improve the fluid dynamic efficacy indicator in accordance with EU Ecodesign directive regarding ventilation fans. The increasing of fluid dynamic efficiency is a way to reduce electrical energy consumption during blower operation. Particularly, this paper focuses on the design optimization of an impeller for kitchen hood. The research-work takes into account the optimization of the blade profile. Inlet and outlet fluid-blade angles have been analyzed and discussed. The methodology proposes the study of a set of geometrical parameters through an analysis based on DOE scheduling with virtual experiments. The proposed test case provides a study of two different fan wheel models for the same hood application. Three geometrical parameters have been considered. The DOE objective function fits the maximization of the fluid dynamic efficiency indicator, in order to reduce energy consumptions. A multi-DOE approach has been used to evaluate the best configuration set. Several CFD simulations have been conducted and the resultant impeller configuration has been also validated through physical tests.
Abstract: The present work investigates the economic feasibility of ecological vehicles. The comparison has been developed between traditional vehicles, gasoline and diesel fueled, and green vehicles powered by electric, hybrid or natural gas motors. Nowadays, the vehicle life cycle cost is an important decision criterion used by consumer to buy a car, due to fuel price increasing. Life cycle cost includes purchase cost, operation cost, but also social cost lead to environmental impact regarding production, use and end-of-life phases. The proposed research focuses life cycle cost from consumer side in order to evaluate the economic feasibility, using ecological solutions for transportation in EU. Different use scenarios are proposed, considering different vehicle sizes and mileages, without considering taxes and any governance incentives. © 2014 IEEE.
Keywords: ecological vehicles | EV | HEV | life cycle cost | natural gas vehicles
Abstract: Generally a part of electric vehicle diffusion is still based on marketing of cars and vans suitable for specific use like work vehicles. A flexible design methodology is required to support rapid prototyping and product customization in the market of tailored EV/PHEV. The research focuses the cooling simulation for a PHEV Li-Ion battery. The thermal analysis is based on the physical parameters of the single cell and on the experimental data. The proposed methodology concerns firstly an analytical approach which evaluates the average heat generated by a single cell during working condition. Then the proposed virtual prototyping analysis has been divided into two levels: the thermal simulation of one cell, and the CFD analysis of a battery module. This workflow has been applied to support the design of a battery pack for a prototypal ecological hybrid vehicle. That test case vehicle is a small van, used for the curbside collection, which has in parallel an internal combustion engine and an electric motor supplied by a LFP battery with small cylindrical cells. The analysis concerns one of the four module which constitutes the whole battery pack. The virtual model has been parameterized and the behavior of air cooling system has been evaluated through virtual tools.
Keywords: Cooling | Lithium battery | Modeling | PHEV | Simulation
Abstract: A niche of the electric vehicle market is the electric retrofit of existing vehicles. These updates replace internal combustion engines with high efficiency electric motors and high capacity Li-ion batteries. This market is dominated by mostly small and medium size enterprises that provide tailored solutions to customers. These companies seek to reduce their costs and lead times by using virtual prototyping tools and methods in the main design processes. In this context, our work defines a design methodology to support designers in the definition of cooling systems. As a test case, we analyzed the electric retrofit of a small electric car with a lead-acid battery that was updated to Li-ion technology. We focused on a simulation of the cooling of the battery using a thermal analysis based on the physical parameters of the cell and test bench results. The issue is the evaluation of the heat generated by the electrochemical reactions of lithium ion battery cells. A representative battery module was simulated following the methodological approach. The virtual prototyping analysis was divided into two levels: the thermal simulation of a single cell, and the computational fluid dynamics (CFD) analysis of a battery module composed of LiFePO4 prismatic cells. The geometric and fluid dynamic parameters were investigated with a CFD solver to study the cooling performance. A cooling system configuration was proposed and analyzed using the virtual prototyping tools. © 2013 IEEE.
Keywords: FEV | Lithium-ion battery | Modeling | Simulation
Abstract: The recently increase of the EV/PHEV market is in part due to the technological progress of battery systems. The energy storage and charging are the critical aspects of an electric vehicle; Li-Ion batteries allow an increase in storage performance and efficiencies despite the needs of a high number of cells. The single Li-Ion cell is constituted by metals, graphite, various salts and electrolytes which result difficult to dispose of or recycle. Therefore the expected environmental sustainability of any EV is limited by the final impact of battery production and disposal. The proposed research studies the Second Life applications suitable for the Li-Ion battery cells used for electric powertrains in order to promote a Sustainable Transportation and avoid the environmental impact that disposal of these batteries would have. A Life Cycle Assessment (LCA) analysis has been adopted to estimate the gain in terms of environmental impact provided by reusing disposed Li-Ion cells for a Second Life application. An automotive battery pack with LiFePO4 cells has been chosen as a test case, then the life-cycle due to vehicle loads has been predicted by accelerated tests and the residual cell capacity has been experimentally evaluated. A possible Second Life scenario has been studied for the automotive Li-Ion batteries: reusing the disposed cell in a smart grid system after vehicle use to provide the grid energy stabilization and storage. This strategy has been evaluated with an LCA tool taking into account materials (anode, cathode, separator, et.), as well as flows and processes (production, assembly, disassembly) both for production and reuse phases. The research results show a positive effect of the Second Life solution on the environmental impact of the Li-Ion cells; moreover, the collected data will be useful for the Second Life strategies and scheduling during the early design phase. © 2012 IEEE.
Keywords: Electric Vehicles | Li-Ion Battery | Life Cycle Assessment | Second Life Applications